Molecules and ions

PAGES 40 TO 48

N

DZ.

13

CHAPT

CONCEPT REVIEW 5
Complete this concept review handout and keep it as a record of what you have learned.

Definitions

- A molecule is a group of two or more chemically bonded atoms.
- An ion is an atom that has become electrically charged by losing or gaining one or more electrons.
- A polyatomic ion is a group of two or more chemically bonded atoms that has become
 electrically charged by losing or gaining one or more electrons.
- A chemical bond is the union of two atoms through the transfer or sharing of one or more electrons.
- An ionic bond is the result of a transfer of one or more electrons from one atom (usually a metal) to another atom (usually a nonmetal).
- A covalent bond is <u>the result of the sharing of one or more electron pairs between two</u> atoms (usually two nonmetals).

Some characteristics of ions

	Negative ion	Positive ion
lin	Gain of one or more electrons.	Loss of one or more electrons.
Loss or gain of electrons		
Number of electrons to protons	More.	Less
Charge	Negative	Positive
Representation according to the Rutherford-Bohr atomic model	Gained electron F-	Lost electron Lost electron Mg ²⁺

© ERP! Reproduction prohibited

Name:	Class:	Date: _		
-------	--------	---------	--	--

Tendency to gain or lose electrons for group A elements, and examples of possible ions

and exa	itthies o	hossinie	, 10119					
Group	IA	II A	III A	IV A	VA	VI A	VII A	VIII A
Number of valence electrons	1	2	3	4	5	6	7	8 (except He)
Tendency	Lose 1 e ⁻	Lose 2 e ⁻	Lose 3 e ⁻	Gain or lose 4 e ⁻	Gain 3 e⁻	Gain 2 e ⁻	Gain 1 e ⁻	None (stable)
Example of possible ion	Li ⁺	Be ²⁺	B ³⁺	C ⁴⁺ ou C ⁴⁻	N ³⁻	o O ² -	F-	Ne (or none)

Examples of common polyatomic ions

Formule chimique	Nom	Formule chimique	Nom
CH ₃ COO-	Acetate	NH ₄ ⁺	Ammonium
HCO ₃ -	Bicarbonate	CO ₃ ²⁻	Carbonate
CIO ₃ -	Chlorate	CrO ₄ ² -	Chromate
OH-	Hydroxide	NO ₃ -	Nitrate
NO ₂ -	Nitrite	PO ₄ 3-	Phosphate
SO ₄ ²⁻	Sulphate	SO ₃ ²⁻	Sulfite

Types of chemical bonds

• •		••
:CI	Mg ²⁺	·CI
• •		••

Ionic bond

Covalent bond

N

BZ

[5]

[-[]

\ E

O ERP! Reproduction prohibited

The rules of nomenclature and notation

PAGES 48 TO 50

CONCEPT REVIEW 6
Complete this concept review handout and keep it as a record of what you have learned.

Three rules for writing the chemical formula of a molecule

- Find the symbol of each element in the molecule by referring to the periodic table.
- Determine the order of the symbols. If a binary molecule contains a metal and a nonmetal, the symbol for the metal comes first. In all other cases, symbols are written in the following order:
 B, Ge, Si, C, Sb, As, P, N, H, Te, Se, S, I Br, Cl, O and F.
- Add subscripts after symbols to specify the number of atoms or ions of each element in the molecule.

Thron	nulee	of no	menclatu	re for	binary	molecules
tnree	rules	UL HUI	iici iriara	COL	Dillion 3	

- Name the first element.
- Change the name of the second element.
- Add, when applicable, a prefix or prefixes to specify the number of atoms of each element.

Some names for the second element in a binary molecule

Name of the element	Name used in nomenclature	
Bromine	Bromide	
Chlorine	Chloride	
lodine	lodide	
Oxygen	Oxide	
Sulphur	Sulphide	

Prefixes indicating the number of atoms of an element in a binary covalent compound

Number of atoms	Prefix
One	Mono-
Two	Di-
Three	Tri-
Four	Tetra-
Five	Penta-

Solubility and concentration

PAGES 50 TO 54

N

D/

13

CONCEPT REVIEW 7
Complete this concept review handout and keep it as a record of what you have learned.

Definitions

- A solution is a homogeneous mixture whose component substances cannot be distinguished, even with the aid of a magnifying instrument.
- Solubility is the maximum amount of solute that can be dissolved in a certain volume of solvent.
- The concentration of a solution is the amount of solute in a given amount of solution.
- The concentration in ppm ("parts per million") is the number of parts of solute in a million parts of solution.
- Molar concentration is the number of moles of solute in a litre of solution.

Effects of various changes on the concentration of a solution

Life of the local city of the				
Change	Effect on the concentration			
Dilution (addition of solvent)	Reduced concentration			
Dissolution (addition of solute)	Increased concentration			

Mathematical formulas and units of measurement

Formula for calculating concentration in g/L:

$$C = \frac{m}{V}$$

where C is the concentration (in g/L)

m is the mass of the solute (in g)

V is the volume of the solution (in L)

Equivalences for 1 ppm:

$$1 \text{ ppm} = \frac{1}{10000000 \text{ g}} = \frac{1}{1000 \text{ g}} = \frac{1 \text{ mg}}{1 \text{ kg}}$$

In aqueous solutions:

$$1 \text{ ppm} \approx \frac{1 \text{ g}}{1000 \text{ L}} \approx \frac{1 \text{ mg}}{1 \text{ L}}$$

Formula for calculating molar concentration:

$$C = \frac{n}{V}$$

where

C is the concentration (in mol/L)

n is the amount of solute (in mol)

V is the volume of the solution (in L)

ERPI Reproduction prohibited

© ERP! Reproduction prohibited

N

PAGES 55 TO 61

CONCEPT REVIEW 8 Complete this concept review handout and keep it as a record of what you have learned.

Definitions

- An electrolyte is a substance that, when dissolved in water, allows an electric current to flow through the solution.
- The electrical conductivity of a solution is a measure of its ability to allow an electric current to flow through it.
- Electrolytic dissociation is the separation of a dissolved compound into two ions of opposite charges.

Strength of electrolytes

Strength of the electrolyte	Dissociation	Electrical conductivity	Example
Strong electrolyte	Nearly complete	Strong	Sodium chloride (or NaCl)
Weak electrolyte	Partial	Weak	Hydrogen fluoride (or HF)
Nonelectrolyte	Nil	None	Sugar

Characteristics of the types of electrolytes

Type of electrolyte	Acid	Base	Salt
Definition	Substance that releases H ⁺ ions in an aqueous solution	Substance that releases OH ⁻ ions in an aqueous solution	Substance produced by the chemical bonding of a metallic ion and a non-metallic ion (other than H ⁺ and OH ⁻ ions)
Chemical	Generally formed from an H ⁺ ion and a nonmetal	Generally formed from a metal and an OH ⁻ ion	Generally formed from a metal and one or more nonmetals

	trace To and resolution	Class:	Date:
Mame:		Oldse.	

Characteristics of the types of electrolytes (cont.)

lype of electro- lyte	Acid	Base	Salt
Reaction to neutral litmus paper	Turns neutral litmus paper red	Turns neutral litmus paper blue	Neutral litmus paper stays purple.
Examples ne	 Fruit juice Soft drinks Gastric juices HCl H₂SO₄ CH₃COOH 	 Cleaning products Heartburn medication NaOH Mg(OH)₂ NH₄OH NH₃ 	• NaCl • AgNO ₃ • CaCl ₂ • CaCO ₃

pH scale

If the pH < 7, the solution is $\frac{acidic.}{neutral.}$

If the pH > 7, the solution is basic.

pH of some common substances

H of some common substances			
рН	Acidity or basicity in comparison to a pH of 7	Examples of substances	
0	10000000 times more acidic	Hydrochloric acid (HCl)	
1	1 000 000 times more acidic	Gastric juices	
2	100 000 times more acidic	Lemon juice	
3	10000 times more acidic	Vinegar, soft drinks	
4	1000 times more acidic	Tomato juice	
5	100 times more acidic	Rainwater	
6	10 times more acidic	Milk	
7	Neutral	Pure water, human blood	
8	10 times more basic	Seawater	
9	100 times more basic	Sodium bicarbonate	
10	1000 times more basic	Soap	
11	10000 times more basic	Ammonia cleaner	
12	100 000 times more basic	Lime	
13	1000000 times more basic	Oven cleaner	
14	10000000 times more basic	Sodium hydroxide (NaOH)	

