$$RATIONAL FUNDS
P= 101 | RATIONAL
P= 101 | RATI$$

c)
$$y = \frac{3 \times 1}{2 \times - \frac{1}{4}}$$
 $x = \frac{3 \cdot 1}{2 \cdot 4}$
 $x = \frac{3 \cdot$

e)
$$\frac{-4}{x+5}$$
 + 1 = $\frac{-4}{x+5}$ + $\frac{x+7}{x+7}$ =

$$9^{-1}(x) = -4 - 5$$

$$|+| + = -5$$

$$| + + = 1$$

$$(0, -1)$$

$$(5, 0)$$

Scanned by CamSon

$$\bigcirc \frac{h(x)}{k(x)} = \frac{2x+5}{x-5}$$

1)
$$m(k(x)) = (X-5)+1 = X-4 = X-4$$

 $5(x-5)-3 = 5x-15-3 = 5x-18$

c)
$$m(m^{-1}(x)) = X$$

$$i(x) = \frac{q}{x+1} + 2$$

$$a = 3$$

$$i(x) = \frac{3}{x+1} + 2$$

Scanned by CamScanner

Solution.

- 1. $N(0) = 500 \frac{450}{1+3(0)} = 50$. This means that at the beginning of the semester, 50 students have had the flu.
- 2. We set N(t)=300 to get $500-\frac{450}{1+3t}=300$ and solve. Isolating the fraction gives $\frac{450}{1+3t}=200$. Clearing denominators gives 450=200(1+3t). Finally, we get $t=\frac{5}{12}$. This means it will take $\frac{5}{12}$ months, or about 13 days, for 300 students to have had the flu.
 - 3. To determine the behavior of N as $t \to \infty$, we can use a table.

	N(t)	t
, HA	≈ 485.48	10
we appoint	≈ 498.50	100
we can	≈ 499.85	1000
7	≈ 499.98	10000

The table suggests that as $t \to \infty$, $N(t) \to 500$. (More specifically, 500^- .) This means as time goes by, only a total of 500 students will have ever had the flu.