3.5B - Synthetic Division

Synthetic division is a short form technique used to divide polynomials. A grid is used to align variables so that one can just focus on the coefficients and thus simplify the work involved. Moreover it only involves multiplying and adding without the complication of subtraction.

$$
\begin{array}{ll}
\text { Ex. } & x^{2}-7 x-10 \\
& x^{4}-25 x^{2}+62 x-36 \\
& -2 x^{3}+x^{2}-2 x
\end{array}
$$

corresponds to coefficients
$1-7-10$ corresponds to coefficients corresponds to coefficients
$10-2562-36$
$\begin{array}{llll}-2 & 1 & -2 & 0\end{array}$

Notice alignment by term degree

Place holders are very important

The technique is outlined side by side with long division using $\left(x^{2}-5 x-9\right) \div(x+2)$

3.5B - Synthetic Division Practice Questions

1. Use synthetic division to divide. Express answer in form $\mathrm{f}(\mathrm{x})=\mathrm{d}(\mathrm{x}) \mathrm{q}(\mathrm{x})+\mathrm{r}(\mathrm{x})$
a) $\left(x^{2}-3 x+5\right) \div(x-2)$
b) $\left(3 x^{2}+2 x-5\right) \div(x-2)$
c) $\left(3 x^{2}-4\right) \div(x-4)$
d) $\left(m^{3}-m^{2}+4 m+15\right) \div\left(m^{2}+2 m-3\right)$
e) $\left(x^{3}+3 x^{2}-16 x+12\right) \div(x-2)$
f) $\left(6 a^{3}+4 a^{2}+9 a+6\right) \div(3 a+2)$
g) $\left(9 x^{3}-3 x^{2}-4 x+2\right) \div(x-2 / 3)$
h) $\left(4 x^{3}+32\right) \div(x+2)$
i) $\left(x^{3}-9 x^{2}+26 x-24\right) \div(x-2)$
j) $\left(-x^{3}+3 x+2\right) \div(x-2)$
k) $\left(x^{4}+63 x-5\right) \div(x+4)$
l) $\left(3 x^{3}-72 x-5\right) \div(x-5)$
m) $\left(x^{4}+3 x^{2}+4\right) \div\left(x^{2}+2 x-1\right)$
n) $\left(6 x^{5}-7 x+4\right) \div(x+1)$

Which of these
questions are
best down with
synthetic
division. Which
questions are
best done using
long division to
2. Find the value of \boldsymbol{k} such that when $2 \mathrm{x}^{3}-3 \mathrm{x}^{2}+\boldsymbol{k} \mathrm{x}-1$ is divided by $\mathrm{x}-1$ the remainder is 2 .
3. When a given polynomial is divided by $x-2$, its quotient is $x^{2}-3 x-7$ and its remainder is -24 . What is the original dividend polynomial?
4. Find the quotient only;
a) $\frac{y^{3}-28 y-41}{y+4} \quad$ b) $\frac{4 x^{3}-10 x^{2}+6 x-15}{2 x-5}$

Answers 1. a) $(x-2)(x-1)+3$ b) $(x-2)(3 x+8)+11$ c) $(x-4)(3 x+12)+44$ d) $\left(m^{2}+2 m-3\right)(m-3)+(13 m+6)$ e) $(x-2)\left(x^{2}+5 x-6\right)$ or $(x-2)(x+6)(x+1)$ f) $(3 a+2)\left(2 a^{2}+3\right)$ or $(a+2 / 3)\left(6 a^{2}+9\right)$ g) $(x-2 / 3)\left(9 x^{2}+3 x-2\right)+2 / 3$ h) $(\mathrm{x}+2)\left(4 \mathrm{x}^{2}-8 \mathrm{x}+16\right)$ i) $(\mathrm{x}-2)(\mathrm{x}-3)(\mathrm{x}-4)$ j) $(\mathrm{x}-2)(-1)(\mathrm{x}+1)(\mathrm{x}+1)$ or $-(\mathrm{x}-2)(\mathrm{x}+1)^{2}$ k) $(\mathrm{x}+4)\left(\mathrm{x}^{3}-4 \mathrm{x}^{2}-16 \mathrm{x}-1\right)-1$
l) $(x-5)\left(3 x^{2}+15 x+3\right)+10$ m) $\left.\left(x^{2}+2 x-1\right)\left(x^{2}-2 x+8\right)-(18 x+12) \mathbf{n}\right)(x+1)\left(6 x^{4}-6 x^{3}+6 x^{2}-6 x-1\right)+52.4$ 3. $x^{3}-5 x^{2}-x-10$ 4. a) $y^{2}-4 y-12 \quad$ b) $2 x^{2}+3$ or $4 x^{2}+6$

