1. Perform the division. List the quotient and remainder.
(a) $\frac{3 x^{2}-11 x+5}{x-4}$

Answer

$[4]$	3	-11	5
0	12	4	
	3	1	$[9]$

Therefore, $3 x^{2}-11 x+5=(x-4)(3 x+1)+9$ where $3 x+1$ is the quotient and 9 is the remainder.
(b) $\frac{5 x^{5}+3 x^{3}+1}{x+2}$

Answer

$[-2]$	5	0	3	0	0	1
	0	-10	20	-46	92	-184
	5	-10	23	-46	92	$[-183]$

Therefore, $5 x^{5}+3 x^{3}+1=\left(5 x^{4}-10 x^{3}+23 x^{2}-46 x+92\right)(x+2)-183$ where $5 x^{4}-10 x^{3}+23 x^{2}-46 x+92$ is the quotient and -183 is the remainder.
(c) $\frac{9 x^{3}+14 x-6}{3 x-2}$

Answer

$\left[\frac{2}{3}\right]$	9	0	14	-6
	0	6	4	12
	9	6	18	$[6]$

Therefore, $9 x^{3}+14 x-6=\left(9 x^{2}+6 x+18\right)\left(x-\frac{2}{3}\right)+6$ where $9 x^{2}+6 x+18$ is the quotient and 6 is the remainder.
2. What is the remainder of the division of $p(x)$ by $x-3$ if:
(a) $p(x)=3 x^{4}+3 x-1$

Answer

$[3]$	3	0	0	3	-1
	0	9	27	81	252
	3	9	27	84	$[251]$

Therefore, the remainder is $p(3)=251$.
(b) $p(x)=7 x^{5}-500 x+3$

Answer

$[3]$	7	0	0	0	-500	3
	0	21	63	189	567	201
	7	21	63	189	67	$[204]$

Therefore, the remainder is $p(3)=204$.
(c) $p(x)=4 x^{4}+x$

Answer

$[3]$	4	0	0	1	0
0	12	36	108	327	
	4	12	36	109	$[327]$

Therefore, the remainder is $p(3)=327$.
3. Find all roots.
(a) $x^{3}-2 x^{2}-5 x+6$

Answer

$$
x^{3}-2 x^{2}-5 x+6=(x-1)(x+2)(x-3)
$$

and therefore the roots are $\{-2,1,3\}$.
(b) $x^{4}+2 x^{3}-9 x^{2}-2 x+8$

Answer

$$
x^{4}+2 x^{3}-9 x^{2}-2 x+8=(x-1)(x+1)(x-2)(x+4)
$$

and therefore the roots are $\{-4,-1,1,2\}$.

