- 1. Perform the division. List the quotient and remainder.
 - (a) $\frac{3x^2 11x + 5}{x 4}$

Answer

[4]	3	-11	5
	0	12	4
	3	1	[9]

Therefore, $3x^2 - 11x + 5 = (x - 4)(3x + 1) + 9$ where 3x + 1 is the quotient and 9 is the remainder.

(b)
$$\frac{5x^5+3x^3+1}{x+2}$$

Answer

[-2]	5 0	0 -10				1 - 184
	5	-10	23	-46	92	[-183]

Therefore, $5x^5 + 3x^3 + 1 = (5x^4 - 10x^3 + 23x^2 - 46x + 92)(x + 2) - 183$ where $5x^4 - 10x^3 + 23x^2 - 46x + 92$ is the quotient and -183 is the remainder.

(c)
$$\frac{9x^3 + 14x - 6}{3x - 2}$$

Answer

$[\frac{2}{3}]$	9 0	0 6	$\begin{array}{c} 14 \\ 4 \end{array}$	-6 12
	9	6	18	[6]

Therefore, $9x^3 + 14x - 6 = (9x^2 + 6x + 18)(x - \frac{2}{3}) + 6$ where $9x^2 + 6x + 18$ is the quotient and 6 is the remainder.

- 2. What is the remainder of the division of p(x) by x 3 if:
 - (a) $p(x) = 3x^4 + 3x 1$ Answer

[3]	3	0	0	3	-1
	0	9	27	81	252
	3	9	27	84	[251]

Therefore, the remainder is p(3) = 251.

(b) $p(x) = 7x^5 - 500x + 3$

Answer

[3]				0 189	-500 567	3 201
	7	21	63	189	67	[204]

Therefore, the remainder is p(3) = 204.

(c)
$$p(x) = 4x^4 + x$$

Answer

[3]	4 0	0 12		1 108	0 327
	4	12	36	109	[327]

Therefore, the remainder is p(3) = 327.

3. Find all roots.

(a)
$$x^3 - 2x^2 - 5x + 6$$

Answer

$$x^{3} - 2x^{2} - 5x + 6 = (x - 1)(x + 2)(x - 3)$$

and therefore the roots are $\{-2, 1, 3\}$.

(b) $x^4 + 2x^3 - 9x^2 - 2x + 8$

Answer

$$x^{4} + 2x^{3} - 9x^{2} - 2x + 8 = (x - 1)(x + 1)(x - 2)(x + 4)$$

and therefore the roots are $\{-4, -1, 1, 2\}$.