1. Differentiate the following function: $f(x)=-x^{14}$
2. Differentiate the following function: $f(x)=\frac{-4}{\sqrt[3]{x^{2}}}$
3. Differentiate the following function: $f(x)=3 x^{3}$
4. Differentiate the following function: $f(x)=\frac{4}{\sqrt[2]{x^{11}}}$
5. Differentiate the following function: $f(x)=3 x^{8}$
6. Differentiate the following function: $f(x)=\frac{1}{x^{11}}$
7. Differentiate the following function: $f(x)=3 x^{5}$
8. Differentiate the following function: $f(x)=-2 x^{6}$
9. Differentiate the following function: $f(x)=-x^{3}$
10. Differentiate the following function: $f(x)=-4 x^{15}$
$\cdot 9$

	${ }_{\text {¢ }}{ }^{x} 09-9$ -	$\tau^{x ¢-*}$	${ }_{9}{ }^{\text {P\%I- }} 8$	${ }_{ \pm} \mathrm{xGL} \cdot \mathrm{L}$	$\frac{{ }_{\text {I }}{ }^{x}}{\text { IT- }}$
${ }_{2} \times 7 \square{ }^{\text {c }}$		$z^{x 6}{ }^{\text {® }}$ ¢	$\xlongequal{\underline{c}^{x} \hat{\varepsilon} \varepsilon} \cdot \sigma$:s.ıəMsuV

Solutions:

1. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} f(x)=\frac{\mathrm{d}}{\mathrm{d} x}-x^{14}>$ Write the function as a power:
$=\frac{\mathrm{d}}{\mathrm{d} x}-x^{14} \quad$ Use the constant factor rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} c f(x)=c \frac{\mathrm{~d}}{\mathrm{~d} x} f(x)$
$=(-1) \frac{\mathrm{d}}{\mathrm{d} x} x^{14} \quad \bullet$ Use the power rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} x^{n}=n x^{n-1}$
$=(-1)(14) x^{14-1} \quad$ Simplify:
$=-14 x^{13} \quad$ Write the result in a standard form:
$=-14 x^{13}$
2. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} f(x)=\frac{\mathrm{d}}{\mathrm{d} x} \frac{-4}{\sqrt[3]{x^{2}}}$ Write the function as a power:
$=\frac{\mathrm{d}}{\mathrm{d} x}-4 x^{\frac{-2}{3}} \quad$ Use the constant factor rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} c f(x)=c \frac{\mathrm{~d}}{\mathrm{~d} x} f(x)$
$=(-4) \frac{\mathrm{d}}{\mathrm{d} x} x^{\frac{-2}{3}} \quad$ Use the power rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} x^{n}=n x^{n-1}$
$=(-4) \frac{-2}{3} x^{\frac{-2}{3}-1}>$ Simplify:
$=\frac{8}{3} x^{\frac{-5}{3}} \quad$ Write the result in a standard form:
$=\frac{8}{3 \sqrt[3]{x^{5}}}$
3. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} f(x)=\frac{\mathrm{d}}{\mathrm{d} x} 3 x^{3} \quad$ Write the function as a power:
$=\frac{\mathrm{d}}{\mathrm{d} x} 3 x^{3} \quad$ Use the constant factor rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} c f(x)=c \frac{\mathrm{~d}}{\mathrm{~d} x} f(x)$
$=(3) \frac{\mathrm{d}}{\mathrm{d} x} x^{3} \quad \bullet$ Use the power rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} x^{n}=n x^{n-1}$
$=(3)(3) x^{3-1} \quad$ Simplify:
$=9 x^{2}>$ Write the result in a standard form:
$=9 x^{2}$
4. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} f(x)=\frac{\mathrm{d}}{\mathrm{d} x} \frac{4}{\sqrt[2]{x^{11}}}$

- Write the function as a power:
$=\frac{\mathrm{d}}{\mathrm{d} x} 4 x^{\frac{-11}{2}} \quad$ Use the constant factor rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} c f(x)=c \frac{\mathrm{~d}}{\mathrm{~d} x} f(x)$
$=(4) \frac{\mathrm{d}}{\mathrm{d} x} x^{\frac{-11}{2}} \quad$ Use the power rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} x^{n}=n x^{n-1}$
$=(4) \frac{-11}{2} x^{\frac{-11}{2}-1}>$ Simplify:
$=\frac{-22}{1} x^{\frac{-13}{2}} \quad$ Write the result in a standard form:
$=\frac{-22}{\sqrt[2]{x^{13}}}$

5. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} f(x)=\frac{\mathrm{d}}{\mathrm{d} x} 3 x^{8} \quad$ Write the function as a power:
$=\frac{\mathrm{d}}{\mathrm{d} x} 3 x^{8} \quad \rightarrow$ Use the constant factor rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} c f(x)=c \frac{\mathrm{~d}}{\mathrm{~d} x} f(x)$
$=(3) \frac{\mathrm{d}}{\mathrm{d} x} x^{8} \quad \rightarrow$ Use the power rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} x^{n}=n x^{n-1}$
$=(3)(8) x^{8-1} \quad$ Simplify:
$=24 x^{7} \quad$ Write the result in a standard form:
$=24 x^{7}$
6. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} f(x)=\frac{\mathrm{d}}{\mathrm{d} x} \frac{1}{x^{11}} \quad$ Write the function as a power:
$=\frac{\mathrm{d}}{\mathrm{d} x} x^{-11} \quad$ Use the constant factor rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} c f(x)=c \frac{\mathrm{~d}}{\mathrm{~d} x} f(x)$
$=(1) \frac{\mathrm{d}}{\mathrm{d} x} x^{-11} \quad$ Use the power rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} x^{n}=n x^{n-1}$
$=(1)(-11) x^{-11-1}>$ Simplify:
$=-11 x^{-12} \quad$ Write the result in a standard form:
$=\frac{-11}{x^{12}}$
7. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} f(x)=\frac{\mathrm{d}}{\mathrm{d} x} 3 x^{5}>$ Write the function as a power:
$=\frac{\mathrm{d}}{\mathrm{d} x} 3 x^{5} \quad$ Use the constant factor rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} c f(x)=c \frac{\mathrm{~d}}{\mathrm{~d} x} f(x)$
$=(3) \frac{\mathrm{d}}{\mathrm{d} x} x^{5} \quad \rightarrow$ Use the power rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} x^{n}=n x^{n-1}$
$=(3)(5) x^{5-1} \quad$ Simplify:
$=15 x^{4} \quad$ Write the result in a standard form:
$=15 x^{4}$
8. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} f(x)=\frac{\mathrm{d}}{\mathrm{d} x}-2 x^{6} \quad$ Write the function as a power:
$=\frac{\mathrm{d}}{\mathrm{d} x}-2 x^{6} \quad \downarrow$ Use the constant factor rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} c f(x)=c \frac{\mathrm{~d}}{\mathrm{~d} x} f(x)$
$=(-2) \frac{\mathrm{d}}{\mathrm{d} x} x^{6} \quad \rightarrow$ Use the power rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} x^{n}=n x^{n-1}$
$=(-2)(6) x^{6-1} \quad$ Simplify:
$=-12 x^{5} \quad \rightarrow$ Write the result in a standard form:
$=-12 x^{5}$
9. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} f(x)=\frac{\mathrm{d}}{\mathrm{d} x}-x^{3} \quad$ Write the function as a power:
$=\frac{\mathrm{d}}{\mathrm{d} x}-x^{3} \quad$ Use the constant factor rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} c f(x)=c \frac{\mathrm{~d}}{\mathrm{~d} x} f(x)$
$=(-1) \frac{\mathrm{d}}{\mathrm{d} x} x^{3} \quad \rightarrow$ Use the power rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} x^{n}=n x^{n-1}$
$=(-1)(3) x^{3-1} \quad$ Simplify:
$=-3 x^{2} \quad$ Write the result in a standard form:
$=-3 x^{2}$
10. $f^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{d} x} f(x)=\frac{\mathrm{d}}{\mathrm{d} x}-4 x^{15} \quad$ Write the function as a power:
$=\frac{\mathrm{d}}{\mathrm{d} x}-4 x^{15} \quad$ Use the constant factor rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} c f(x)=c \frac{\mathrm{~d}}{\mathrm{~d} x} f(x)$
$=(-4) \frac{\mathrm{d}}{\mathrm{d} x} x^{15} \quad$ Use the power rule: $\quad \frac{\mathrm{d}}{\mathrm{d} x} x^{n}=n x^{n-1}$
$=(-4)(15) x^{15-1} \quad$ Simplify:
$=-60 x^{14} \quad$ Write the result in a standard form:
$=-60 x^{14}$
