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•  Use long division to divide polynomials by other 

   polynomials. 

 

•  Use synthetic division to divide polynomials by   

   binomials of the form (x – k). 

 

•  Use the Remainder Theorem and the Factor 

   Theorem. 

What You Should Learn 
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Long Division of Polynomials 



4 

Long Division of Polynomials 
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Example 1 – Long Division of Polynomials 

Divide 6x3 – 19x2 + 16x – 4 by x – 2, and use the result to 

factor the polynomial completely. 
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Example 1 – Solution 

Think 

Think 

Think 

Multiply: 6x2(x – 2). 

Subtract. 

Multiply: 2(x – 2). 

Subtract. 

Multiply: –7x(x – 2). 

Subtract. 
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Example 1 – Solution 

From this division, you can conclude that 

6x3 – 19x2 + 16x – 4 = (x – 2)(6x2 – 7x + 2) 

and by factoring the quadratic 6x2 – 7x + 2, you have 

6x3 – 19x2 + 16x – 4 = (x – 2)(2x – 1)(3x – 2). 

cont’d 
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Example 1 – Solution 

Note that this factorization agrees with the graph shown in 

Figure 2.28 in that the three x-intercepts occur at 

x = 2, x =   , and x =   . 

cont’d 

Figure 2.28 
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Long Division of Polynomials 
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Long Division of Polynomials 

 

 

 

 

 

This implies that 
 

      x2 + 3x + 5 = (x + 1)(x + 2) + 3 
 

Multiply each side by (x + 1). 
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Long Division of Polynomials 
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Long Division of Polynomials 

The Division Algorithm can also be written as 
 

                                      . 

 
𝑓 𝑥

𝑑 𝑥
 

improper because the degree of f (x) is greater than or 

equal to the degree of d(x). 

 

proper because the degree of r (x) is less than the degree 

of d(x). 
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Long Division of Polynomials 

 

1. Write the dividend and divisor in descending powers of  

    the variable. 

 

2. Insert placeholders with zero coefficients for missing  

    powers of the variable. 
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Synthetic Division 



15 

Synthetic Division 



16 

Synthetic Division 

This algorithm for synthetic division works only for divisors 

of the form x – k.  

 

Remember that 

     x + k = x – (–k). 
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Example 4 – Using Synthetic Division 

Use synthetic division to divide x4 – 10x2 – 2x + 4 by x + 3. 

 

Solution: 

You should set up the array as follows. Note that a zero is 

included for the missing x3-term in the dividend. 
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Example 4 – Solution 

Then, use the synthetic division pattern by adding terms in 

columns and multiplying the results by –3. 

 

 

 

 

 

 
 

So, you have  
 

                                                                                  . 

cont’d 
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The Remainder and Factor Theorems 
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The Remainder and Factor Theorems 

 

 

 



21 

Example 5 – Using the Remainder Theorem 

Use the Remainder Theorem to evaluate the following 

function at x = –2. 

  f (x) = 3x3 + 8x2 + 5x – 7 

 

Solution: 

Using synthetic division, you obtain the following. 
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Example 5 – Solution 

Because the remainder is r = –9, you can conclude that 

  f (–2) = –9. 

 

This means that (–2, –9) is a point on the graph of f. You 

can check this by substituting x = –2 in the original function. 

 

Check: 

  f (–2)  = 3(–2)3 + 8(–2)2 + 5(–2) – 7 

           = 3(–8) + 8(4) – 10 – 7 

           = –9 

r = f (k) 

cont’d 
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The Remainder and Factor Theorems 
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Example 6 – Factoring a Polynomial: Repeated Division 

Show that (x – 2) and (x + 3) are factors of 

  f (x) = 2x4 + 7x3 – 4x2 – 27x – 18. 

Then find the remaining factors of f (x). 

 

Solution: 

Using synthetic division with the factor (x – 2), you obtain 

the following. 

0 remainder, so f (2) = 0 

and (x – 2) is a factor. 



25 

Example 6 – Solution 

Take the result of this division and perform synthetic 

division again using the factor (x + 3). 

 

 

 

 

 

Because the resulting quadratic expression factors as 

 2x2 + 5x + 3 = (2x + 3)(x + 1) 

the complete factorization of f (x) is 

  f (x) = (x – 2)(x + 3)(2x + 3)(x + 1). 

0 remainder, so f (–3) = 0 

and (x + 3) is a factor. 

cont’d 
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The Remainder and Factor Theorems 

 

 

 

 

 

 


