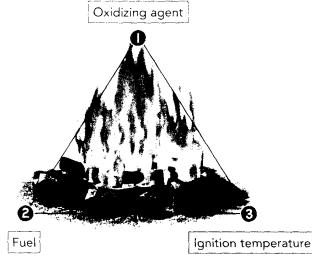
MATTER - NOTES

1. Ions

- When an atom loses or gains electrons it becomes a charged atom. A charged atom is called an **ion**.
- Elements tend to acquire the configuration of the inert gas closest to them in the periodic table.


Example:

Calcium has 20 protons and 20 electrons. When it loses its two valence electrons, what charge does it have?

It becomes a positive ion with a charge of +2.

Chemical Changes

- 1. Combustion
 - Signs (heat and light)
 - Fire triangle

- An oxidizing agent, or oxidant, is a substance that can cause a fuel to react. Oxygen is the most common oxidizing agent on Earth.
- **2** A fuel is a substance that releases a large amount of energy by reacting with an oxidizing agent. Wood and propane are excellent fuels.
- 3 The ignition temperature is the minimum temperature at which the energy present is sufficient to start combustion. Ignition temperatures vary from one fuel to another.

Types of Combustion:

A. Rapid

Large amounts of heat and energy are released, often results in a flame!

B. Spontaneous

- Type of combustion that starts without an external ignition source
- The "heat" side of the fire triangle; in rapid and slow combustions you need an external source of ignition to start off the reaction; once started the heat produced fuels it along

C. Slow

 Reaction is slow and have gradual release of energy over time. Usually does not produce a flame.

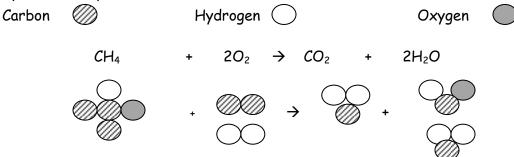
2. Photosynthesis and respiration

- Producers carry out photosynthesis to make their own food
 - Carbon dioxide + water +sunlight → glucose (food) + oxygen
- Respiration takes place in the cells of most living organisms
 - Glucose + oxygen → carbon dioxide + water + energy
 - The energy produced is used to keep the body warm and/or used to carry out tasks

3. Acid-base neutralization

- Acids neutralize bases and bases neutralize acids
 - Acid + base → salt + water
 - ex. "Liming" a lake means adding a base to lake water to decrease its acidity (increase its pH)

4. Balancing chemical equations


• The number of each type of atom on each side of a chemical equation must remain constant.

Example: Balance the following equation: $N_2 + H_2 \rightarrow NH_3$

$$2N_2 + 3H_2 \rightarrow NH_3$$

Particle models

Example: Draw a particle model of the following chemical reaction. Use these symbols to represent the atoms.

Conservation of mass

• The mass of the reactants equals the mass of the products. Example:

Eight grams of methane (CH₄) is burned in 32 grams of oxygen (O₂) according to the following equation: $CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$

Along with a certain quantity of water, 22 grams of carbon dioxide (CO_2) is obtained. What is the mass of water obtained?

Mass of reactants = Mass of products

$$8g + 32g = 22g = ?$$

 $40g = 40g$

$$40 g - 22g = 18 q$$

TYPES OF REACTIONS:

- $6CO_2 + 6H_2O$ +energy (light) $\rightarrow C_6H_{12}O_6 + 6O_2$
 - PHOTOSYNTHESIS
- $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + energy$
 - RESPIRATION
- $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
 - COMBUSTION
- $HNO_3 + LiOH \rightarrow H_2O + LiNO_3$
 - NEUTRALIZATION
- $NH_4OH \rightarrow NH_3 + H_2O$
 - DECOMPOSITION
- $N_2 + 3H_2 \rightarrow 2NH_3$
 - SYNTHESIS
- Fe + CuSO₄ → FeSO₄ + Cu
 - REPLACEMENT