Mathematics 5 SN

Name : \qquad

MATHEMATICS 5 SN - ABSOLUTE VALUE

 Question Booklet1 Solve the following inequalities in \mathfrak{R}.
a) $\quad|x-5| \leq 12$
b) $\quad|3 x+1| \leq-1$
c) $\quad|7 x-3| \leq 3$
d) $\quad|x+1|-|-2| \leq|3|$
a) \qquad
b) \qquad
c)
d)

2 Solve the following inequation and plot the solution set on the real number line.

$$
|2 x+3| \leq 1
$$

Show your work.
\square

At the beginning of a laboratory experiment, the temperature of a substance is $29^{\circ} \mathrm{C}$. Throughout the experiment, the deviation in temperature must follow the formula :

$$
|2 x-59| \leq 3
$$

where x represents the temperature of the substance.

Between which values can the temperature vary?

Show your work.

Work

Result : \qquad

Solve the following equation in $\mathfrak{R}:|6-3 x|>12$.
A) $-\infty,-2[$
B) $-\infty,-2[\cup] 6,+\infty$
C) $] 6,+\infty$
D) $]-2,6[$

$$
|2 x-1|-2 \geq 0
$$

A) $\left[\frac{-1}{2}, \frac{3}{2}\right]$
B) $\left[\frac{-3}{2}, \frac{1}{2}\right]$
C) $\left.-\infty, \frac{-1}{2}\right] \cup\left[\frac{3}{2},+\infty\right.$
D) $\left.-\infty, \frac{-3}{2}\right] \cup\left[\frac{1}{2},+\infty\right.$

6 Functions f and g are represented below.

Which of the following is the graph of f o g ?
A)

C)

B)

D)

Given $E(t)=(g \circ f)(t)$, where $f(t)=-2 t+7$ and $g(t)=2|t-1|+6$.

What is the rule of correspondence of $E(t)$?

The rule of correspondence is $E(t)=$ \qquad -.

A car's speed is a function of time, which can be represented by an absolute value function graph.

Dean's car goes from rest to a maximum speed of $150 \mathrm{~km} / \mathrm{h}$ in 12 seconds and slows down at the same rate when he brakes.

For how many seconds is the speed of Dean's car at least $50 \mathrm{~km} / \mathrm{h}$ but no more than $120 \mathrm{~km} / \mathrm{h}$?

Show all your work.

Show your work.

Answer The car's speed will be at least $50 \mathrm{~km} / \mathrm{h}$ but no more than $120 \mathrm{~km} / \mathrm{h}$ for \qquad seconds.

Given the function $f(x)=3 x-2$ and the function $g(x)=-4[-2 x+6]-1$.

What is the rule of the composition g o f ?
$(g \circ f)=$ \qquad

Tom is competing on a Drag-Race track. Starting from rest, his car speeds up at a constant rate, reaching a maximum speed of $150 \mathrm{~km} / \mathrm{h}$ in 12 seconds. Tom brakes and the car slows down at the same rate.

This situation is described by an absolute value function whose rule is

$$
S(t)=-\frac{150}{12}|t-12|+150
$$

where S represents the speed of his $\operatorname{car}(\mathrm{km} / \mathrm{h})$ as a function of the time t (sec.).

For how long is his car's speed at least $50 \mathrm{~km} / \mathrm{h}$?
A) 8 sec .
B) 10 sec .
C) $\quad 16 \mathrm{sec}$.
D) $\quad 18 \mathrm{sec}$.

2- Correction key

1
b) $\left[\frac{-2}{3}, 0\right]$
c) $] 0, \frac{6}{7}[$
d) \varnothing

Work: (example)
$|2 x+3| \leq 1$

$$
\begin{aligned}
-1 & \leq 2 x+3 \leq 1 \\
-1-3 & \# 2 x \leq 1-3 \\
-4 & \leq 2 x \leq-2 \\
-2 & \leq x \leq-1
\end{aligned}
$$

Résultat:

Known

Range $=|2 x-59| \leq 3$

$$
|2 x-59| \leq 3
$$

$$
|2 x-59| \leq 3
$$

$$
-3 \leq 2 x-59 \leq 3
$$

$$
56 \leq 2 x \leq 62
$$

$$
28 \leq x \leq 31
$$

Result : $28 \leq x \leq 31$

C

The rule of correspondence is $E(t)=4|t-3|+6$.
Accept any equivalent equation.

Example of an acceptable solution

Equation with the vertex

$$
\begin{aligned}
& y=a|x-h|+k \\
& y=a|x-12|+150
\end{aligned}
$$

Passing through (0,0)

$$
\begin{aligned}
& 0=a|0-12|+150 \\
& a=-12.5 \\
& y=-12.5|x-12|+150
\end{aligned}
$$

Time at $50 \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
& 50=-12.5|x-12|+150 \\
& 8=|x-12| \\
& (x-12)=8 \quad \text { or } \quad-(x-12)=8 \\
& x=20 \text { sec }
\end{aligned}
$$

Time at $120 \mathrm{~km} / \mathrm{h}$

$$
\begin{aligned}
& 120=-12.5|x-12|+150 \\
& 2.4=|x-12| \\
& (x-12)=2.4 \quad \text { or } \quad-(x-12)=2.4 \\
& x=14.4 \mathrm{sec}
\end{aligned}
$$

```
9.6 sec - 4 sec = 5.6 seconds
20 sec - 14.4 sec = 5.6 seconds
```

Answer: The car's speed will be at least $50 \mathrm{~km} / \mathrm{h}$ but no more than $120 \mathrm{~km} / \mathrm{h}$ for 11.2 seconds.

$$
9 \quad(g \circ f)=-4[-6 x+10]-1 \quad \text { or } \quad(g \circ f)=-4\left[-6\left(x-\frac{5}{3}\right)\right]-1
$$

10 C

