Mathematics 5 SN GREATEST INTEGER FUNCTION

A pastry chef orders sugar from his supplier. The cost of delivery, $C(n)$, depends on the number, n, of kilograms of sugar ordered. The supplier charges a flat rate of $\$ 10$ for delivery. However, he gives a rebate of $\$ 0.40$ for every 100 kg of sugar delivered.

The pastry chef recorded the delivery costs for the last five orders in the table below.

Quantity n of sugar ordered (kg)	Cost of Delivery $C(n)$ $(\$)$
50	10
75	10
100	9.60
210	9.20
280	9.20

The delivery costs for today's order was \$4.

What are all the possible quantities of sugar the pastry chef could have ordered today?

Show all your work.

Answer: The possible quantities of sugar, in kilograms, are \qquad -

A designer is preparing a model of a children's slide. She began by drawing the steps and the slide on a Cartesian plane scaled in cm , as shown in the diagram below.

The steps of the slide are represented by the relation $y=32.5[0.05 x+3]+52.5$.
The top step begins on the y-axis. The slide is attached to the other end of the top step.

The slide is represented by a rational function with the equation $y=\frac{a}{x+10}-10$.

The end of the slide is 180 cm from the origin of the Cartesian plane.

To the nearest tenth of a centimetre, what is the distance (d) from the ground to the end of the slide?

Show all your work.

The weekly salary $s(n)$ of a car salesperson is established by the equation

$$
\mathrm{s}(\mathrm{n})=200\left[\frac{1}{2}(\mathrm{n}+3)\right]+200
$$

where n is the number of cars sold in a week.

What salaries are possible for someone who sells fewer than 8 cars?
A) $\$ 500, \$ 600, \$ 700, \$ 800, \$ 900, \$ 1000, \$ 1100, \$ 1200$
B) $\$ 0, \$ 600, \$ 800, \$ 1000, \$ 1200$
C) $\$ 600, \$ 800, \$ 1000, \$ 1200$
D) $\$ 400, \$ 600, \$ 800, \$ 1000, \$ 1200$

A paint company computerized its billing service using a program based on the function $\mathrm{c}(\mathrm{n})$ defined below.

Price of a litre of paint

$$
c(n)=-\left[\frac{n}{1000}\right]+7
$$

where $\mathrm{c}(n)$ represents the price of one litre of paint and n the number of litres sold.

Draw the graph of this function for $0 \leq n<4000$.

The cost C , in dollars, to send a parcel is given by the function $\mathrm{C}(x)=[2.75 x]+1.25$ where x is the mass in kg .

How much will it cost Danielle to send a parcel that weighs 4.4 kg ?

It will cost \$ \qquad to send the parcel.

The function f is defined by the following rule:

$$
f(x)=3\left[-\frac{(x-1)}{2}\right]+6
$$

What are the zeros of this function?
A) $\quad 11.5,2[$
B) $] 3,5]$
C) $\quad \mathrm{j}, 8$ [
D) $[5,8[$

2- Correction key

1
 Example of an appropriate solution

Rule of Correspondence
$C(n)=10-0.40\left[\frac{n}{100}\right]$

Number of kilograms of sugar ordered:
$4=10-0.40\left[\frac{n}{100}\right]$
$-6=-0.40\left[\frac{n}{100}\right]$
$15=\left[\frac{n}{100}\right]$

Trial and error is an acceptable method of determining the solution set.

Answer: The possible quantities of sugar, in kilograms, are [1500, 1600[.

Note: Accept an equivalent notation for the solution set.

Greatest integer function

$$
\begin{aligned}
x=0 \Rightarrow \quad y & =32.5[0.05(0)+3]+52.5 \\
& =32.5[3]+52.5 \\
& =150 \mathrm{~cm}
\end{aligned}
$$

Step length $=\frac{1}{0.05}=20 \Rightarrow$ Last open point is $(20,150)$

Rational function

$$
\begin{aligned}
y & =\frac{a}{x+10}-10 \\
150 & =\frac{a}{20+10}-10 \\
160 & =\frac{a}{30} \\
a & =4800
\end{aligned}
$$

Equation

$$
y=\frac{4800}{x+10}-10
$$

$x=180 \Rightarrow y=\frac{4800}{180+10}-10$

$$
\approx 15.26 \mathrm{~cm}
$$

Answer: To the nearest tenth of a centimetre, the distance is $\mathbf{1 5 . 3} \mathrm{cm}$.

Note: \quad Students who use an appropriate method in order to correctly determine the point $(20,150)$ have shown they have a partial understanding of the problem.

It will cost $\$ 13.25$ to send the parcel.

B

