Mathematics 5 SN

GREATEST INTEGER FUNCTION

1	A pastry chef orders sugar from his supplier. The cost of delivery, $C(n)$, depends on the number, n , of kilograr		
	of sugar ordered. The supplier charges a flat rate of \$10 for delivery. However, he gives a rebate of \$0.40 for		
	every 100 kg of sugar delivered.		

The pastry chef recorded the delivery costs for the last five orders in the table below.

Quantity <i>n</i> of sugar	Cost of Delivery <i>C(n)</i>
ordered (kg)	(\$)
50	10
75	10
100	9.60
210	9.20
280	9.20

The delivery costs for today's order was \$4.

What are all the possible quantities of sugar the pastry chef could have ordered today?

Show all yo	our work.
Answer:	The possible quantities of sugar, in kilograms, are

A designer is preparing a model of a children's slide. She began by drawing the steps and the slide on a Cartesian plane scaled in cm, as shown in the diagram below.

The steps of the slide are represented by the relation y = 32.5[0.05x + 3] + 52.5.

The top step begins on the y-axis. The slide is attached to the other end of the top step.

The slide is represented by a rational function with the equation $y = \frac{a}{x+10} - 10$.

The end of the slide is 180 cm from the origin of the Cartesian plane.

To the nearest tenth of a centimetre, what is the distance (d) from the ground to the end of the slide?

Show all your work.

Show all your work.

Relation representing steps:

$$y = 32.5[0.05x + 3] + 52.5$$

Rational function representing slide:

$$y = \frac{a}{x+10} - 10$$

Answer: To the nearest tenth of a centimetre, the distance is _____ cm.

The weekly salary s(n) of a car salesperson is established by the equation

$$s(n) = 200 \left[\frac{1}{2}(n+3) \right] + 200$$

where n is the number of cars sold in a week.

3

What salaries are possible for someone who sells fewer than 8 cars?

- A) \$500, \$600, \$700, \$800, \$900, \$1000, \$1100, \$1200
- B) \$0, \$600, \$800, \$1000, \$1200
- C) \$600, \$800, \$1000, \$1200
- D) \$400, \$600, \$800, \$1000, \$1200

A paint company computerized its billing service using a program based on the function c(n) defined below.

Price of a litre of paint

$$c(n) = -\left[\frac{n}{1000}\right] + 7$$

where c(n) represents the price of one litre of paint and n the number of litres sold.

Draw the graph of this function for $0 \le n < 4000$.

The cost C, in dollars, to send a parcel is given by the function C(x) = [2.75x] + 1.25 where x is the mass in kg.

How much will it cost Danielle to send a parcel that weighs 4.4 kg?

It will cost \$_____ to send the parcel.

6

The function *f* is defined by the following rule:

$$f(x) = 3\left[-\frac{(x-1)}{2}\right] + 6$$

What are the zeros of this function?

A)]1.5, 2[

C)]5, 8[

B)]3, 5]

D) [5, 8[

2- Correction	key	

Example of an appropriate solution

Rule of Correspondence

1

$$C(n) = 10 - 0.40 \left[\frac{n}{100} \right]$$

Number of kilograms of sugar ordered:

$$4 = 10 - 0.40 \left[\frac{n}{100} \right]$$

$$-6 = -0.40 \left[\frac{n}{100} \right]$$

$$15 = \left[\frac{n}{100}\right]$$

Trial and error is an acceptable method of determining the solution set.

Answer: The possible quantities of sugar, in kilograms, are [1500, 1600[.

Note: Accept an equivalent notation for the solution set.

Greatest integer function

$$x = 0 \Rightarrow$$
 $y = 32.5[0.05(0) + 3] + 52.5$
= 32.5[3] + 52.5
= 150 cm

Step length =
$$\frac{1}{0.05}$$
 = 20 \Rightarrow Last open point is (20, 150)

Rational function

$$y = \frac{a}{x + 10} - 10$$

$$150 = \frac{a}{20 + 10} - 10$$

$$160 = \frac{a}{30}$$

$$a = 4800$$

Equation

$$y = \frac{4800}{x + 10} - 10$$

$$x = 180 \Rightarrow y = \frac{4800}{180 + 10} - 10$$

 $\approx 15.26 \text{ cm}$

Answer: To the nearest tenth of a centimetre, the distance is **15.3** cm.

Note: Students who use an appropriate method in order to correctly determine the point (20, 150) have shown they have a partial understanding of the problem.

3 D

Price of a litre of paint

- 5 It will cost \$13.25 to send the parcel.
- 6 B