Section 3.2 Polynomial Functions and Their Graphs

Polynomial Functions

A polynomial function of degree n is a function of the form
Px)=ax"+ a,_x"'"+ - +ax+a,
where n is a nonnegative integer and a,, # 0.
The numbers a,, a,, a,, ..., a, are called the coefficients of the
polynomial.

The number a, is the constant coefficient or constant term.

The number a,, the coefficient of the highest power, is the leading
coefficient, and the term a,x" is the leading term.

EXAMPLES:

P(r)=3, Q(x)=4r—-7, R(z)=2"+z, S(z)=22°—062>-10

QUESTION: Which of the following are polynomial functions?
(a) f(z)=—a®+2x+4

(b) f(z) = (Va)’ = 2(Vx)* +5(vx) — 1

(c) flz)=(z—2)(x—1)(z+4)?

(@ f) =5

Answer: (a) and (c)

If a polynomial consists of just a single term, then it is called a monomial. For example,
P(z) = 2% and Q(z) = —6x° are monomials.

Graphs of Polynomials

The graph of a polynomial function is always a smooth curve; that is, it has no breaks or
corners.
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The simplest polynomial functions are the monomials P(z) = 2", whose graphs are shown in
the Figure below.
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EXAMPLE: Sketch the graphs of the following functions.
(a) Pla)=—a® (b) Q) = (x—2)" (c) R(z)=—24"+4

Solution:
(a) The graph of P(z) = —2? is the reflection of the graph of y = 2® in the z-axis.
(b) The graph of Q(x) = (z — 2)* is the graph of y = z* shifted to the right 2 units.

(c) We begin with the graph of y = z°. The graph of y = —2x° is obtained by stretching
the graph vertically and reflecting it in the z-axis. Finally, the graph of R(x) = —2z° + 4 is
obtained by shifting upward 4 units.
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EXAMPLE: Sketch the graphs of the following functions.
(a) P(z)= —2? (b) Q(x) = (z+1)° (c) R(z)=—32*+3



EXAMPLE: Sketch the graphs of the following functions.

(a) P(z)= -2 (b) Qz)=(z+1)° (c) R(z)=—32"+3
Solution:

(a) The graph of P(z) = —z? is the reflection of the graph of y = 22 in the z-axis.

(b) The graph of Q(z) = (x + 1)° is the graph of y = x° shifted to the left 1 unit.

(c) We begin with the graph of y = z?. The graph of y = —3x? is obtained by stretching
the graph vertically and reflecting it in the z-axis. Finally, the graph of R(z) = —3z% + 3 is
obtained by shifting upward 3 units.
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End Behavior and the Leading Term

The end behavior of a polynomial is a description of what happens as x becomes large in the
positive or negative direction. To describe end behavior, we use the following notation:

X — 00 means “x becomes large in the positive direction”

X— —00 means “x becomes large in the negative direction”

For example, the monomial y = 22 has the following end behavior:
y—ooasxr — oo and y— o0oasxr — —oo

The monomial y = 23 has the following end behavior:
y—ooasxr — oo and y— —o0asxr — —o0

For any polynomial, the end behavior is determined by the term that contains the highest power
of x, because when z is large, the other terms are relatively insignificant in size.



End Behavior of Polynomials

The end behavior of the polynomial P(x) = a,x" + a,_x""' + - -+ + a;x + a, is determined by the degree n and
the sign of the leading coefficient a,. as indicated in the following graphs.
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COMPARE: Here are the graphs of the monomials 23, —23, 22, and —a2.
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EXAMPLE: Determine the end behavior of the polynomial
P(x) = 22" +52% + 42 — 7
Solution: The polynomial P has degree 4 and leading coefficient —2. Thus, P has even degree
and negative leading coefficient, so it has the following end behavior:
y— —ooasr —oo and y— —ooas T — —o0

The graph in the Figure below illustrates the end behavior of P.
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EXAMPLE: Determine the end behavior of the polynomial
P(x) = —32% 4 202° + 60z + 2



EXAMPLE: Determine the end behavior of the polynomial

P(x) = —32% 4 202° + 60z + 2

Answer:
y— —ocasr —o0o and y— o00asx — —o0

EXAMPLE: Determine the end behavior of the polynomial

P(z) =82 — 722 + 32+ 7

Answer:
y— —ocoasxr — —oo and Yy — 00 as T — 00

EXAMPLE:
(a) Determine the end behavior of the polynomial P(z) = 3z° — 523 + 2z.

(b) Confirm that P and its leading term @Q(x) = 3z° have the same end behavior by graphing
them together.

Solution:

(a) Since P has odd degree and positive leading coefficient, it has the following end behavior:
y—ooasxr — oo and y— —o0as T — —00

(b) The Figure below shows the graphs of P and () in progressively larger viewing rectangles.
The larger the viewing rectangle, the more the graphs look alike. This confirms that they have
the same end behavior.
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To see algebraically why P and ) have the same end behavior, factor P as follows and compare
with Q.

P(z) = 32° (1 I + i) Q(z) = 32°

32 3zt

When z is large, the terms 5/32% and 2/3z* are close to 0. So for large x, we have
P(x) ~ 32°(1 = 0+0) = 32° = Q(x)

So when x is large, P and () have approximately the same values.

By the same reasoning we can show that the end behavior of any polynomial is determined by
its leading term.



Using Zeros to Graph Polynomials

If P is a polynomial function, then c is called a zero of P if P(¢) = 0. In other words, the
zeros of P are the solutions of the polynomial equation P(z) = 0. Note that if P(c) = 0, then
the graph of P has an z-intercept at x = ¢, so the z-intercepts of the graph are the zeros of the
function.

Real Zeros of Polynomials

If P is a polynomial and c is a real number, then the following are equivalent.

1. cis azero of P.

2. x = cis a solution of the equation P(x) = 0.
3. x — cisafactor of P(x).

4. x = cis an x-intercept of the graph of P.

The following theorem has many important consequences.

Intermediate Value Theorem for Polynomials

If P is a polynomial function and P(a) and P(b) have opposite signs, then
there exists at least one value ¢ between a and b for which P(c) = 0.

One important consequence of this theorem is that be- A
tween any two successive zeros, the values of a polyno-
mial are either all positive or all negative. This obser-
vation allows us to use the following guidelines to graph
polynomial functions. a
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1. Zeros. Factor the polynomial to find all its real zeros: these are the
x-intercepts of the graph.

2. Test Points. Make a table of values for the polynomial. Include test
points to determine whether the graph of the polynomial lies above or below
the x-axis on the intervals determined by the zeros. Include the y-intercept
in the table.

3. End Behavior. Determine the end behavior of the polynomial.

4. Graph. Plot the intercepts and other points you found in the table. Sketch a
smooth curve that passes through these points and exhibits the required end
behavior.



EXAMPLE: Sketch the graph of the polynomial function P(x) = (z + 2)(z — 1)(x — 3).

Solution: The zeros are x = —2, 1, and 3. These determine the intervals (—oo, —2), (=2, 1), (1, 3),
and (3,00). Using test points in these intervals, we get the information in the following sign
diagram.

Test point Test point Test point Test point
X=-2 X = —1 X=2 x=4
P(-3)< 0O F(-1) >0 F(2)< 0O F(3) >0
-2 | 3
Sign of
Pix) =(x+2)(x— 1)(x —3) — + — +
Graph of P below abO\»ie below ‘dbO\ie
X-axis X-axis X-axis X-axis

Plotting a few additional points and connecting them with a smooth curve helps us complete

the graph.
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EXAMPLE: Sketch the graph of the polynomial function P(z) = (z + 2)(z — 1)(z — 3)2.
Solution: The zeros are —2, 1, and 3. End term behavior:
y—ooase — oo and y— 00 as T — —00

We use test points 0 and 2 to obtain the graph:
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EXAMPLE: Let P(z) = 23 — 22 — 3z.
(a) Find the zeros of P. (b) Sketch the graph of P.



EXAMPLE: Let P(z) = 2 — 222 — 3a.
(a) Find the zeros of P. (b) Sketch the graph of P.
Solution:

(a) To find the zeros, we factor completely:
P(z) = 2° — 22* — 3x

=z(2® — 22 — 3)
=z(x —3)(x+1)
Thus, the zeros are x =0, x =3, and x = —1.

(b) The z-intercepts are x = 0, = 3, and = —1. The y-intercept is P(0) = 0. We make a
table of values of P(x), making sure we choose test points between (and to the right and left
of) successive zeros. Since P is of odd degree and its leading coefficient is positive, it has the
following end behavior:

y—ooasxr —o0o and y— —o0asxr — —o0

We plot the points in the table and connect them by a smooth curve to complete the graph.
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EXAMPLE: Let P(z) = 2® — 922 + 20z
(a) Find the zeros of P. (b) Sketch the graph of P.
Solution:
(a) P(x) =x(x —4)(x —5), so the zeros are x =0, x =4, x = 5.
(b) End term behavior:
y—oocass — oo and y— —00as T — —00

We use test points 3 and 4.5 to obtain the graph:
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EXAMPLE: Let P(z) = —22* — 2% + 322,
(a) Find the zeros of P. (b) Sketch the graph of P.
Solution:
(a) To find the zeros, we factor completely:
P(z) = —22* — 2* 4+ 32% = —2?(22* + v — 3) = —2*(22 + 3)(z — 1)
Thus, the zeros are x =0, x = —%, and z = 1.

(b) The z-intercepts are & = 0, © = —2, and « = 1. The y-intercept is P(0) = 0. We make a
table of values of P(x), making sure we choose test points between (and to the right and left
of) successive zeros. Since P is of even degree and its leading coefficient is negative, it has the
following end behavior:

y— —ocoasxr — o0 and y— —ooasxr — —o0

We plot the points in the table and connect them by a smooth curve to complete the graph.

x P(x) YA
=2 —12
—1.5 0
—1 2
—-0.5 0.75
0 0
0.5 0.5
1 0
1.5 | —6.75

EXAMPLE: Let P(z) = 3z* — 5% — 1222
(a) Find the zeros of P. (b) Sketch the graph of P.
Solution:
(a) P(z) = 2*(z — 3)(3z + 4), so the zeros are x =0, z = 3, v = —4/3.
(b) End term behavior:
y—ooasxr — oo and y— —00 as & — —00

We use test points —1 and 1 to obtain the graph:
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EXAMPLE: Let P(z) = 2® — 222 — 4a + 8.

(a) Find the zeros of P. (b) Sketch the graph of P.
Solution:

(a) To find the zeros, we factor completely:

Px)=2°—22° — 4o +8 =2%(x — 2) —4(x — 2) = (2 —4)(z — 2)
=(x+2)(z—2)(z—2)
= (v +2)(x —2)°

Thus the zeros are z = —2 and x = 2.

(b) The z-intercepts are * = —2 and x = 2. The y-intercept is P(0) = 8. The table gives
additional values of P(x). Since P is of odd degree and its leading coefficient is positive, it has
the following end behavior:

y—ooasxr —o0o and y— —o0asxr — —o0

We plot the points in the table and connect them by a smooth curve to complete the graph.
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EXAMPLE: Let P(z) = 2 + 32 — 9z — 2T.
(a) Find the zeros of P. (b) Sketch the graph of P.

Answer:
(a) P(x) = (z+ 3)*(z — 3), so the zeros are v = —3, = = 3.
(b) End term behavior:
y—ooasr —oo and y— —00 as T — —00

We use test point 0 to obtain the graph:
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Shape of the Graph Near a Zero

If c is a zero of P and the corresponding factor x — ¢ occurs exactly m times in the factorization
of P then we say that c is a zero of multiplicity m. One can show that the graph of P crosses
the z-axis at c if the multiplicity m is odd and does not cross the x-axis if m is even. Moreover,
it can be shown that near x = ¢ the graph has the same general shape as y = A(z — ¢)™.

Shape of the Graph Near a Zero of Multiplicity m

Suppose that ¢ is a zero of P of multiplicity m. Then the shape of the graph of
P near c is as follows.

Multiplicity of ¢ Shape of the graph of P near the x-intercept ¢
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modd, m > 1 —

meven, m > 1 —

EXAMPLE: Graph the polynomial P(z) = z*(x — 2)3(z + 1)2
Solution: The zeros of P are —1,0, and 2, with multiplicities 2, 4, and 3, respectively.

O is a zero of 2 is a zero of —1is a zero of
multiplicity 4. multiplicity 3. multiplicity 2.

P(x) = x*(x — 2)%(x + 1)?
The zero 2 has odd multiplicity, so the graph crosses the z-axis at the x-intercept 2. But the

zeros 0 and —1 have even multiplicity, so the graph does not cross the z-axis at the xz-intercepts
0 and —1.

Since P is a polynomial of degree 9 and has positive leading coefficient, it has the following end
behavior:
y—ooasxr — oo and y— —o0asxr — —o0

With this information and a table of values, we sketch the graph.

X P(x) YA
~13 | —-92 |
—1 0 Even 3
multiplicities
-0.5 | -39
0 0 0 X
1 —4 Odd multiplicity
2 0
2.3 8.2
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Local Maxima and Minima of Polynomials

If the point (a, f(a)) is the highest point on the graph of f within some viewing rectangle,
then (a, f(a)) is a local maximum point on the graph and if (b, f(b)) is the lowest point on
the graph of f within some viewing rectangle, then (b, f(b)) is a local minimum point. The
set of all local maximum and minimum points on the graph of a function is called its local

extrema.
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For a polynomial function the number of local extrema must be less than the degree, as the
following principle indicates.

Local Extrema of Polynomials

If P(x) = a,x" + a,_x"~" + -+ + a,x + a,is a polynomial of degree n,
then the graph of P has at most n — 1 local extrema.

A polynomial of degree n may in fact have less than n—1 local extrema. For example, P(z) = 2°
has no local extrema, even though it is of degree 3.

EXAMPLE: Determine how many local extrema each polynomial has.

(a) Pi(z) = 2* + 23 — 162% — 4 + 48 (b) Py(z) = 2° 4 32* — 52® — 1522 4 4z — 15
(c) P3(z) = Ta* + 32% — 10z
Solution:

(a) P; has two local minimum points and one local maximum point, for a total of three local
extrema.

b P@hastwo]ocalnﬂnhnunl oints and two local maximum OHﬁS,ﬂHEiUﬂ&lOfﬁNHIOGﬂ
p p
extrema.

(¢) Ps has just one local extremum, a local minimum.
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Pix) = x*+ x° — 16x% — 4x + 48 Pyx) = x>+ 3x* =543 — I5x> +4x — 15 Py(x) = Tx* + 3x% — 10x
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EXAMPLE: Determine how many local extrema each polynomial has.
(a) Pi(z) =2%—x (b) Py(z) = z* — 823 4 222% — 24z + 5
Solution:

(a) P; has one local minimum point and one local maximum point for a total of two local
extrema.

» has two local minimum points and one local maximum point for a total o ree loca
b) P, hast local mini int d local i int f total of th local
extrema.
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EXAMPLE: Sketch the family of polynomials P(z) = 2% — kz? + 3 for k = 0,1,2,3, and 4.
How does changing the value of k affect the graph?

Solution: The polynomials are graphed below. We see that increasing the value of k causes the
two local minima to dip lower and lower.

YA
20 -

—2 0

EXAMPLE: Sketch the family of polynomials P(z) = x* — cx? for ¢ = 0,1, 2, and 3. How does
changing the value of ¢ affect the graph?
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EXAMPLE: Sketch the family of polynomials P(x) = z* — cx? for ¢ = 0, 1,2, and 3. How does
changing the value of ¢ affect the graph?

Solution: The polynomials
Py(z) =2%, Pi(z) =2 2% Py(z)=2—-22% Py(z)=2"— 327

are graphed in the Figure below. We see that increasing the value of ¢ causes the graph to
develop an increasingly deep “valley” to the right of the y-axis, creating a local maximum at
the origin and a local minimum at a point in quadrant IV. This local minimum moves lower
and farther to the right as ¢ increases. To see why this happens, factor P(x) = 2?(x — ¢). The
polynomial P has zeros at 0 and ¢, and the larger ¢ gets, the farther to the right the minimum
between 0 and ¢ will be.
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