
Section 3.2 Polynomial Functions and Their Graphs

EXAMPLES:

P (x) = 3, Q(x) = 4x − 7, R(x) = x2 + x, S(x) = 2x3 − 6x2 − 10

QUESTION: Which of the following are polynomial functions?

(a) f(x) = −x3 + 2x + 4

(b) f(x) = (
√

x)3 − 2(
√

x)2 + 5(
√

x) − 1

(c) f(x) = (x − 2)(x − 1)(x + 4)2

(d) f(x) =
x2 + 2

x2 − 2

Answer: (a) and (c)

If a polynomial consists of just a single term, then it is called a monomial. For example,
P (x) = x3 and Q(x) = −6x5 are monomials.

Graphs of Polynomials

The graph of a polynomial function is always a smooth curve; that is, it has no breaks or
corners.
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The simplest polynomial functions are the monomials P (x) = xn, whose graphs are shown in
the Figure below.

EXAMPLE: Sketch the graphs of the following functions.

(a) P (x) = −x3 (b) Q(x) = (x− 2)4 (c) R(x) = −2x5 + 4

Solution:

(a) The graph of P (x) = −x3 is the reflection of the graph of y = x3 in the x-axis.

(b) The graph of Q(x) = (x − 2)4 is the graph of y = x4 shifted to the right 2 units.

(c) We begin with the graph of y = x5. The graph of y = −2x5 is obtained by stretching
the graph vertically and reflecting it in the x-axis. Finally, the graph of R(x) = −2x5 + 4 is
obtained by shifting upward 4 units.

EXAMPLE: Sketch the graphs of the following functions.

(a) P (x) = −x2 (b) Q(x) = (x + 1)5 (c) R(x) = −3x2 + 3
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EXAMPLE: Sketch the graphs of the following functions.

(a) P (x) = −x2 (b) Q(x) = (x + 1)5 (c) R(x) = −3x2 + 3

Solution:

(a) The graph of P (x) = −x2 is the reflection of the graph of y = x2 in the x-axis.

(b) The graph of Q(x) = (x + 1)5 is the graph of y = x5 shifted to the left 1 unit.

(c) We begin with the graph of y = x2. The graph of y = −3x2 is obtained by stretching
the graph vertically and reflecting it in the x-axis. Finally, the graph of R(x) = −3x2 + 3 is
obtained by shifting upward 3 units.

End Behavior and the Leading Term

The end behavior of a polynomial is a description of what happens as x becomes large in the
positive or negative direction. To describe end behavior, we use the following notation:

For example, the monomial y = x2 has the following end behavior:

y → ∞ as x → ∞ and y → ∞ as x → −∞

The monomial y = x3 has the following end behavior:

y → ∞ as x → ∞ and y → −∞ as x → −∞

For any polynomial, the end behavior is determined by the term that contains the highest power
of x, because when x is large, the other terms are relatively insignificant in size.
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COMPARE: Here are the graphs of the monomials x3, −x3, x2, and −x2.

EXAMPLE: Determine the end behavior of the polynomial

P (x) = −2x4 + 5x3 + 4x − 7

Solution: The polynomial P has degree 4 and leading coefficient −2. Thus, P has even degree
and negative leading coefficient, so it has the following end behavior:

y → −∞ as x → ∞ and y → −∞ as x → −∞

The graph in the Figure below illustrates the end behavior of P.

EXAMPLE: Determine the end behavior of the polynomial

P (x) = −3x3 + 20x2 + 60x + 2
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EXAMPLE: Determine the end behavior of the polynomial

P (x) = −3x3 + 20x2 + 60x + 2

Answer:
y → −∞ as x → ∞ and y → ∞ as x → −∞

EXAMPLE: Determine the end behavior of the polynomial

P (x) = 8x3 − 7x2 + 3x + 7

Answer:
y → −∞ as x → −∞ and y → ∞ as x → ∞

EXAMPLE:

(a) Determine the end behavior of the polynomial P (x) = 3x5 − 5x3 + 2x.

(b) Confirm that P and its leading term Q(x) = 3x5 have the same end behavior by graphing
them together.

Solution:

(a) Since P has odd degree and positive leading coefficient, it has the following end behavior:

y → ∞ as x → ∞ and y → −∞ as x → −∞

(b) The Figure below shows the graphs of P and Q in progressively larger viewing rectangles.
The larger the viewing rectangle, the more the graphs look alike. This confirms that they have
the same end behavior.

To see algebraically why P and Q have the same end behavior, factor P as follows and compare
with Q.

P (x) = 3x5

(
1 − 5

3x2
+

2

3x4

)
Q(x) = 3x5

When x is large, the terms 5/3x2 and 2/3x4 are close to 0. So for large x, we have

P (x) ≈ 3x5(1 − 0 + 0) = 3x5 = Q(x)

So when x is large, P and Q have approximately the same values.

By the same reasoning we can show that the end behavior of any polynomial is determined by
its leading term.
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Using Zeros to Graph Polynomials

If P is a polynomial function, then c is called a zero of P if P (c) = 0. In other words, the
zeros of P are the solutions of the polynomial equation P (x) = 0. Note that if P (c) = 0, then
the graph of P has an x-intercept at x = c, so the x-intercepts of the graph are the zeros of the
function.

The following theorem has many important consequences.

One important consequence of this theorem is that be-
tween any two successive zeros, the values of a polyno-
mial are either all positive or all negative. This obser-
vation allows us to use the following guidelines to graph
polynomial functions.
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EXAMPLE: Sketch the graph of the polynomial function P (x) = (x + 2)(x − 1)(x − 3).

Solution: The zeros are x = −2, 1, and 3. These determine the intervals (−∞,−2), (−2, 1), (1, 3),
and (3,∞). Using test points in these intervals, we get the information in the following sign
diagram.

Plotting a few additional points and connecting them with a smooth curve helps us complete
the graph.

EXAMPLE: Sketch the graph of the polynomial function P (x) = (x + 2)(x − 1)(x − 3)2.

Solution: The zeros are −2, 1, and 3. End term behavior:

y → ∞ as x → ∞ and y → ∞ as x → −∞
We use test points 0 and 2 to obtain the graph:

EXAMPLE: Let P (x) = x3 − 2x2 − 3x.

(a) Find the zeros of P. (b) Sketch the graph of P.
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EXAMPLE: Let P (x) = x3 − 2x2 − 3x.

(a) Find the zeros of P. (b) Sketch the graph of P.

Solution:

(a) To find the zeros, we factor completely:

P (x) = x3 − 2x2 − 3x

= x(x2 − 2x − 3)

= x(x − 3)(x + 1)

Thus, the zeros are x = 0, x = 3, and x = −1.

(b) The x-intercepts are x = 0, x = 3, and x = −1. The y-intercept is P (0) = 0. We make a
table of values of P (x), making sure we choose test points between (and to the right and left
of) successive zeros. Since P is of odd degree and its leading coefficient is positive, it has the
following end behavior:

y → ∞ as x → ∞ and y → −∞ as x → −∞
We plot the points in the table and connect them by a smooth curve to complete the graph.

EXAMPLE: Let P (x) = x3 − 9x2 + 20x.

(a) Find the zeros of P. (b) Sketch the graph of P.

Solution:

(a) P (x) = x(x − 4)(x − 5), so the zeros are x = 0, x = 4, x = 5.

(b) End term behavior:

y → ∞ as x → ∞ and y → −∞ as x → −∞
We use test points 3 and 4.5 to obtain the graph:
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EXAMPLE: Let P (x) = −2x4 − x3 + 3x2.

(a) Find the zeros of P. (b) Sketch the graph of P.

Solution:

(a) To find the zeros, we factor completely:

P (x) = −2x4 − x3 + 3x2 = −x2(2x2 + x − 3) = −x2(2x + 3)(x − 1)

Thus, the zeros are x = 0, x = −3
2
, and x = 1.

(b) The x-intercepts are x = 0, x = −3
2
, and x = 1. The y-intercept is P (0) = 0. We make a

table of values of P (x), making sure we choose test points between (and to the right and left
of) successive zeros. Since P is of even degree and its leading coefficient is negative, it has the
following end behavior:

y → −∞ as x → ∞ and y → −∞ as x → −∞

We plot the points in the table and connect them by a smooth curve to complete the graph.

EXAMPLE: Let P (x) = 3x4 − 5x3 − 12x2.

(a) Find the zeros of P. (b) Sketch the graph of P.

Solution:

(a) P (x) = x2(x − 3)(3x + 4), so the zeros are x = 0, x = 3, x = −4/3.

(b) End term behavior:

y → ∞ as x → ∞ and y → −∞ as x → −∞

We use test points −1 and 1 to obtain the graph:
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EXAMPLE: Let P (x) = x3 − 2x2 − 4x + 8.

(a) Find the zeros of P. (b) Sketch the graph of P.

Solution:

(a) To find the zeros, we factor completely:

P (x) = x3 − 2x2 − 4x + 8 = x2(x − 2) − 4(x − 2) = (x2 − 4)(x − 2)

= (x + 2)(x − 2)(x − 2)

= (x + 2)(x − 2)2

Thus the zeros are x = −2 and x = 2.

(b) The x-intercepts are x = −2 and x = 2. The y-intercept is P (0) = 8. The table gives
additional values of P (x). Since P is of odd degree and its leading coefficient is positive, it has
the following end behavior:

y → ∞ as x → ∞ and y → −∞ as x → −∞
We plot the points in the table and connect them by a smooth curve to complete the graph.

EXAMPLE: Let P (x) = x3 + 3x2 − 9x − 27.

(a) Find the zeros of P. (b) Sketch the graph of P.

Answer:

(a) P (x) = (x + 3)2(x − 3), so the zeros are x = −3, x = 3.

(b) End term behavior:

y → ∞ as x → ∞ and y → −∞ as x → −∞
We use test point 0 to obtain the graph:
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Shape of the Graph Near a Zero

If c is a zero of P and the corresponding factor x−c occurs exactly m times in the factorization
of P then we say that c is a zero of multiplicity m. One can show that the graph of P crosses
the x-axis at c if the multiplicity m is odd and does not cross the x-axis if m is even. Moreover,
it can be shown that near x = c the graph has the same general shape as y = A(x − c)m.

EXAMPLE: Graph the polynomial P (x) = x4(x − 2)3(x + 1)2.

Solution: The zeros of P are −1, 0, and 2, with multiplicities 2, 4, and 3, respectively.

The zero 2 has odd multiplicity, so the graph crosses the x-axis at the x-intercept 2. But the
zeros 0 and −1 have even multiplicity, so the graph does not cross the x-axis at the x-intercepts
0 and −1.

Since P is a polynomial of degree 9 and has positive leading coefficient, it has the following end
behavior:

y → ∞ as x → ∞ and y → −∞ as x → −∞
With this information and a table of values, we sketch the graph.
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Local Maxima and Minima of Polynomials

If the point (a, f(a)) is the highest point on the graph of f within some viewing rectangle,
then (a, f(a)) is a local maximum point on the graph and if (b, f(b)) is the lowest point on
the graph of f within some viewing rectangle, then (b, f(b)) is a local minimum point. The
set of all local maximum and minimum points on the graph of a function is called its local
extrema.

For a polynomial function the number of local extrema must be less than the degree, as the
following principle indicates.

A polynomial of degree n may in fact have less than n−1 local extrema. For example, P (x) = x3

has no local extrema, even though it is of degree 3.

EXAMPLE: Determine how many local extrema each polynomial has.

(a) P1(x) = x4 + x3 − 16x2 − 4x + 48 (b) P2(x) = x5 + 3x4 − 5x3 − 15x2 + 4x − 15
(c) P3(x) = 7x4 + 3x2 − 10x

Solution:

(a) P1 has two local minimum points and one local maximum point, for a total of three local
extrema.

(b) P2 has two local minimum points and two local maximum points, for a total of four local
extrema.

(c) P3 has just one local extremum, a local minimum.
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EXAMPLE: Determine how many local extrema each polynomial has.

(a) P1(x) = x3 − x (b) P2(x) = x4 − 8x3 + 22x2 − 24x + 5

Solution:

(a) P1 has one local minimum point and one local maximum point for a total of two local
extrema.

(b) P2 has two local minimum points and one local maximum point for a total of three local
extrema.

EXAMPLE: Sketch the family of polynomials P (x) = x4 − kx2 + 3 for k = 0, 1, 2, 3, and 4.
How does changing the value of k affect the graph?

Solution: The polynomials are graphed below. We see that increasing the value of k causes the
two local minima to dip lower and lower.

EXAMPLE: Sketch the family of polynomials P (x) = x3 − cx2 for c = 0, 1, 2, and 3. How does
changing the value of c affect the graph?
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EXAMPLE: Sketch the family of polynomials P (x) = x3 − cx2 for c = 0, 1, 2, and 3. How does
changing the value of c affect the graph?

Solution: The polynomials

P0(x) = x3, P1(x) = x3 − x2, P2(x) = x3 − 2x2, P3(x) = x3 − 3x2

are graphed in the Figure below. We see that increasing the value of c causes the graph to
develop an increasingly deep “valley” to the right of the y-axis, creating a local maximum at
the origin and a local minimum at a point in quadrant IV. This local minimum moves lower
and farther to the right as c increases. To see why this happens, factor P (x) = x2(x− c). The
polynomial P has zeros at 0 and c, and the larger c gets, the farther to the right the minimum
between 0 and c will be.
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