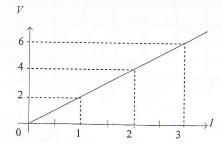

## Answer Key

## **Graphing Resistance**

1. The following graph shows the intensity of the current through a conductor versus the potential difference applied to it.


V



 $\frac{1.2 - 0}{60 - 0} = 0.02 \Omega$ 

Find the resistance of the conductor.

2. The electric current passing through a resistor has been measured for different voltages. The following graph shows the results.



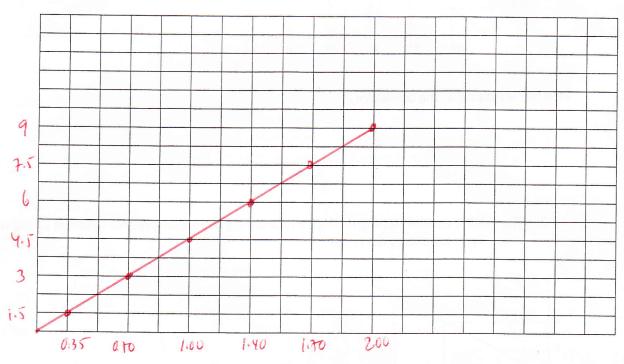
What is the value of the resistance of the resistor?

A)  $2\Omega$ 

C)  $10 \Omega$ 

B) 0.5 Ω

D) 90 Ω


3. Varying the potential difference between 0 and 9 volts you measure the current through a nichrome wire, gauge 26 and length 50 cm.

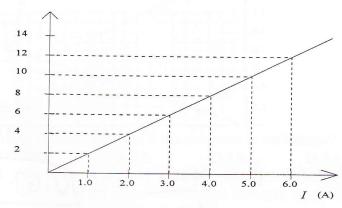
Your results are shown in the table below.

| POTENTIAL DIFFERENCE (V) | CURRENT (A) |
|--------------------------|-------------|
| 0.0                      | 0.00        |
| 1.5                      | 0.35        |
| 3.0                      | 0.70        |
| 4.5                      | 1.00        |
| 6.0                      | 1.40        |
| 7.5                      | 1.70        |
| 9.0                      | 2.00        |

A) Draw a resistance graph of the current (I) as a function of the potential difference (V).

Voltar (v)

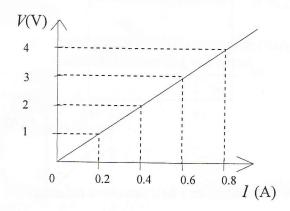



B) From the graph, determine the resistance of the wire.

Current (A)

$$R = \frac{9-0}{2-0} = \boxed{4.5 \text{ s}}$$

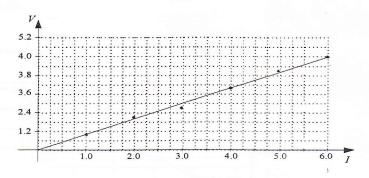
4. The following graph shows the intensity of the current through a conductor versus the potential difference applied to it.


V(V)



 $R = \frac{12-0}{6-0} = \sqrt{2}$ 

Find the resistance of the conductor.


5. The graph below illustrates current intensity I as a function of potential difference V for a resistor.

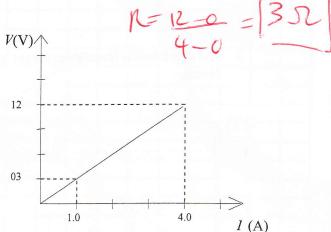


R= 4-0 = 52

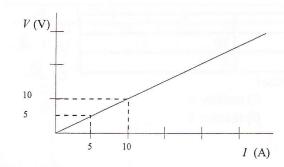
What is the resistance of the resistor?

6. In the laboratory, a circuit element is subjected to variations in the potential difference. The graph shown at the right indicates the values obtained.



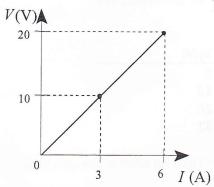

Calculate the resistance of this circuit element.

$$R = \frac{4-0}{6-0} = 0.67 \, \Omega$$


7. You are to connect an ammeter in such a way that you will be able to directly read the current intensity running through resistor R<sub>1</sub>.

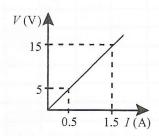
A resistor is connected in an electric circuit. The graph below illustrates the change in current intensity *I* as a function of the potential difference *V* across the resistor.

According to this graph, what is the value of the resistance of the resistor?




The following graph shows the variation in the current intensity, *I*, as a function of the potential difference (voltage), *V*, across a resistor.




According to the graph, what is the resistance of the resistor?

- Α) 10 Ω
- B) 1 Ω
- C) 2 Ω
- D) 0.5 Ω
- 8. The following graph illustrates the change in the current intensity, *I*, in a circuit element as a function of the potential difference (voltage), *V*, across its terminals.



What is the resistance of this circuit element?

- A) 2Ω
- Β) 0.5 Ω
- C) 3.3 Ω
- D) 100 Ω
- 9. The following graph illustrates the change in potential difference (voltage), *V*, as a function of the current intensity, *I*, in a circuit.



What is resistance of this circuit?

- A)  $0.1 \Omega$
- B) 10.0 Ω
- C)  $3.0 \Omega$
- D) 15.0  $\Omega$
- 10. The following table shows measurements related to four different resistors.

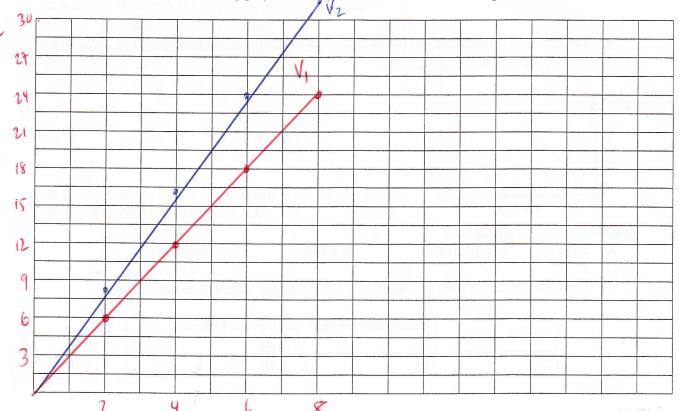
| Resistor | Potential Difference (V) | Current Intensity (A) |  |
|----------|--------------------------|-----------------------|--|
| 1        | 10                       | 10                    |  |

152

| 2 | 10 | 1  | 102  |
|---|----|----|------|
| 3 | 1  | 10 | 0.12 |
| 4 | 4  | 2  | 2 0. |

Which of the above resistors has the greatest resistance?

- A) Resistor 1
- B) Resistor 2


- C) resistor 3
- D) resistor 4

11. A student was asked to vary the current intensity in this circuit and to measure the potential difference (voltage) across the terminals of each resistor for each value of  $I_t$ .

The student made the following observations:

| $I_{t}(A)$ | V <sub>1</sub> (V) | V <sub>2</sub> (V) |  |
|------------|--------------------|--------------------|--|
| 2          | 6                  | 8                  |  |
| 4          | 12                 | 16                 |  |
| 6          | 18                 | 24                 |  |
| 8          | 24                 | 32                 |  |

- A) For each resistor, draw a **graph** showing current intensity *I* as a function of the potential difference (voltage) *V* across the terminals of that resistor.
- B) Calculate the slope of each graph in order to determine the resistance of each resistor.
- C) Given this data and using graphs, determine which resistor has the greatest conductance.



Current (A)