Electric current and electrical power

Concept review 21 Complete this concept

Complete this concept review handout and keep it as a record of what you have learned...

Definitions

- Dynamic electricity describes all the phenomena related to electrical charges in motion.
- Electric current is the orderly flow of negative charges carried by electrons.
- Ohm's law states that, for a given resistance, the potential difference in an electrical circuit is directly proportional to the current intensity.
- Electrical power is the amount of work an electrical device can perform per second.

Unit of measurement: \underline{W} Symbol: \underline{W}

 $1 W = \frac{1 J}{1 s}$

Characteristics of electric current

Characteristic (symbol)	Definition	Unit of measurement (symbol)	Equation
Current intensity (I)	The number of charges that flow past a given point in an electrical circuit every second.	Ampere (A)	$1A = \frac{1C}{1s}$
Potential difference (U)	The amount of energy transferred between two points in an electrical circuit.	Volt (V)	$1V = \frac{1J}{1C}$
Electrical Electrical (R)	The ability of a material to hinder the flow of electric current.	Ohm (Ω)	$1\Omega = \frac{1V}{1A}$

Mathematical formulas and units of measurement

Formula for determining the current intensity in a circuit:

$$I = \frac{Q}{\Delta t}$$

is the current intensity (in A). where ___

is the charge (in C).

is time interval (in s).

Formula for determining the potential difference between two points in a circuit:

$$U = \frac{E}{q}$$

where \underline{U}

is the potential difference (in V).

is the energy transferred (in J).

is the charge (in C).

Formula for d'Ohm's law:

where $\underline{\cup}$

is the potential difference (in V).

is the resistance (in Ω). R

is the current intensity (in A).

Formula expressing electrical power as a function of work:

$$P_e = \frac{W}{\Delta t}$$

where

is the electrical power (in W).

is the work (in J).

is time interval (in s). Δt

Formula expressing electrical power as a function of potential difference and current intensity:

$$P_e = UI$$

where $\frac{P_e}{}$ is the electrical power (in W).

is the potential difference (in V).

is the current intensity (in A).

Formula expressing the relationship between electrical power and electrical energy:

$$E = P_e \Delta t$$

where _E

is the electrical energy used (in J or kWh).

is the electrical power (in W or kW).

is time interval (in s or h). Δt

INTEGRATION QUESTIONS

Electric current and electrical power

1. A machine needs a charge of 1800 C to run for 3 minutes. What is the current intensity required to make it run?

$$3 \text{ min} = 180 \text{ s}$$

$$1 = \frac{q}{\Delta t} = \frac{1800 \text{ C}}{180 \text{ s}} = 10 \text{ A}$$

The current intensity required to make the machine run for 3 minutes is 10 A.

An electric stove requires a potential difference of 220 V. What charge is necessary for it to provide 450 000 J of energy?

$$q = \frac{E}{U} = \frac{450000 J}{220 V} = 2045 C$$

For the stove to provide 450 000 J of energy with a potential difference of 220 V, a charge of 2045 C is needed.

- 3. A tool runs on a current of 20 A and a potential difference of 120 V.
 - a) What is the tool's electrical resistance?

$$R = \frac{U}{I} = \frac{120 \text{ V}}{20 \text{ A}} = 6 \Omega$$

The tool's electrical resistance is 6 Ω .

What is the tool's electrical power?

$$P_e = UI = 120 V \times 20 A = 2400 W$$

The tool's electrical power is 2400 W.

A radio receiver needs a current of 6 A to work. What charge is needed to make it work for 10 minutes?

10 min =
$$600 \text{ s}$$

q = $1 \times \Delta t = 6 \text{ A} \times 600 \text{ s} = 3600 \text{ C}$

A charge of 3600 C is needed to make the radio receiver work for 10 minutes.

_ Date: _____

What amount of energy can a 350 C charge provide in a 120 V circuit?

$$E = U \times d = 120 \text{ V} \times 350 \text{ C} = 42000 \text{ J}$$

2 HOZ 9H

A 350 C charge with a potential difference of 120 V can provide 42 000 J of energy.

A toaster has an electrical power of 970 W. If it is used for two and a half minutes, what amount of energy does that represent?

The boaster core 145 500, I of energy in two and a half minutes.

An electricity bill shows that 1320 kWh was consumed over a 70-day period. Calculate the electrical power used in this period.

$$P_{0} = \frac{E}{\Delta t} = \frac{1020 \text{ kWh}}{1680 \text{ h}} = 0.79 \text{ kW} = 790 \text{ W}$$

The electrical power used in 70 days was 790 W.

What amount of electrical energy will a 900 W coffee maker have consumed after six minutes of use?

The coffee maker will have consumed 324 000 J after six minutes of use.

An element in a circuit requires a potential difference of 120 V and offers a resistance of Ω .

What is the intensity of the current flowing through the element?

$$1 - \frac{U}{R} = \frac{120 \text{ V}}{12 \Omega} = 10 \text{ A}$$

The current intensity is 10 A.

What is the element's electrical power?

$$P = UI = 120 V \times 10 A = 1200 W$$

The element's electrical power is 1200 W.

ERPI Reproduction prohibited