© ACTIVITY 8.5

Using Technology

Student help

See keystrokes for several models of calculators at www.mcdougallittell.com

Graphing Logarithmic Functions

You can use a graphing calculator to graph logarithmic functions simply by using the LOG or LN key. To graph a logarithmic function having a base other than 10 or e, you need to use the change-of-base formula to rewrite the function in terms of common or natural logarithms.

EXAMPLE

Use a graphing calculator to graph $y=\log _{2} x$ and $y=\log _{2}(x-3)+1$.

SOLUTION

(1) Rewrite each function in terms of common logarithms.

$$
\begin{array}{rlrl}
y & =\log _{2} x & y & =\log _{2}(x-3)+1 \\
& =\frac{\log x}{\log 2} & & =\frac{\log (x-3)}{\log 2}+1
\end{array}
$$

(2) Enter each function into a graphing calculator.

Although the calculator will correctly evaluate the function without parentheses, you can include them for clarity.

The graph of $y=\log _{2} x$ passes through (1,0), and the line $x=0$ is a vertical asymptote.

The graph of $y=\log _{2}(x-3)+1$ passes through $(4,1)$, and the line $x=3$ is a vertical asymptote.

EXERCISES

Use a graphing calculator to graph the function. Give the coordinates of a point through which the graph passes, and state the vertical asymptote of the graph.

1. $y=\log _{3} x$
2. $y=\log _{9} x$
3. $y=\log _{4} x$
4. $y=\log _{7} x$
5. $y=\log _{5} x$
6. $y=\log _{11} x$
7. $y=\log _{5}(x-2)$
8. $y=\log _{4}(x+1)$
9. $y=\log _{2}(x-5)-3$
10. $y=\log _{4}(x-7)+9$
11. $y=\log _{5}(x+2)+6$
12. $y=\log _{7}(x-4)+4$
13. Compare the domains of the graphs of $y=\log x$ and $y=\log |x|$.
