RATIONAL FUNCTIONS

- Find the domains of rational functions.
- Find the vertical and horizontal asymptotes of graphs of rational functions.
- Analyze and sketch graphs of rational functions.
- Sketch graphs of rational functions that have slant asymptotes.
- Use rational functions to model and solve real-life problems.

Introduction

A rational function is a quotient of polynomial functions. It can be written in the form

$$
f(x)=\frac{N(x)}{D(x)}
$$

where $N(x)$ and $D(x)$ are polynomials and $D(x)$ is not the zero polynomial.

Find the domain of the reciprocal function $f(x)=\frac{1}{x}$ and discuss the behavior of f near any excluded x-values.

Solution:

Because the denominator is zero when $x=0$ the domain of f is all real numbers except $x=0$.

©i Fxample 1 - Solution

x	-1	-0.5	-0.1	-0.01	-0.001	$\longrightarrow 0$
$f(x)$	-1	-2	-10	-100	-1000	$\longrightarrow-\infty$

x	$0 \longleftarrow$	0.001	0.01	0.1	0.5	1
$f(x)$	$\infty \longleftarrow$	1000	100	10	2	1

Vertical and Horizontal Asymptotes

Mivertical and Horizontal Asymptotes

$$
\underbrace{f(x) \longrightarrow-\infty \text { as } x \longrightarrow 0^{-}} \quad \underbrace{f(x) \longrightarrow \infty \text { as } x \longrightarrow 0^{+}}
$$

$f(x)$ decreases without bound as x approaches 0 from the left.

The line $x=0$ is a

vertical asymptote of the graph of f.
The line $y=0$ is a horizontal asymptote of the graph of f.
$f(x)$ increases without bound
as x approaches 0 from the right.

$$
f(x) \longrightarrow 0 \text { as } x \longrightarrow-\infty \quad f(x) \longrightarrow 0 \text { as } x \longrightarrow \infty
$$

$f(x)$ approaches 0 as x decreases without bound.
$f(x)$ approaches 0 as x
increases without bound.

Definitions of Vertical and Horizontal Asymptotes

1. The line $x=a$ is a vertical asymptote of the graph of f if

$$
f(x) \longrightarrow \infty \text { or } f(x) \longrightarrow-\infty
$$

as $x \longrightarrow a$, either from the right or from the left.
2. The line $y=b$ is a horizontal asymptote of the graph of f if

$$
f(x) \longrightarrow b
$$

as $x \longrightarrow \infty$ or $x \longrightarrow-\infty$.

Mivertical and Horizontal Asymptotes

MVertical and Horizontal Asymptotes

The graphs of $f(x)=\frac{1}{x}$ and $f(x)=\frac{2 x+1}{x+1}$ are hyperbolas.

Vertical and Horizontal Asymptotes

Vertical and Horizontal Asymptotes of a Rational Function

Let f be the rational function given by

$$
f(x)=\frac{N(x)}{D(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}}
$$

where $N(x)$ and $D(x)$ have no common factors.

1. The graph of f has vertical asymptotes at the zeros of $D(x)$.
2. The graph of f has one or no horizontal asymptote determined by comparing the degrees of $N(x)$ and $D(x)$.
a. If $n<m$, the graph of f has the line $y=0$ (the x-axis) as a horizontal asymptote.
b. If $n=m$, the graph of f has the line $y=\frac{a_{n}}{b_{m}}$ (ratio of the leading coefficients) as a horizontal asymptote.
c. If $n>m$, the graph of f has no horizontal asymptote.

Example 2 - Finding Vertical and Horizontal Asymptotes

Find all vertical and horizontal asymptotes of the graph of each rational function.
a. $f(x)=\frac{2 x^{2}}{x^{2}-1}$
b. $f(x)=\frac{x^{2}+x-2}{x^{2}-x-6}$

Solution:
a. the degree of the numerator $=$ the degree of the denominator.

The leading coefficient of the numerator is 2 and the leading coefficient of the denominator is 1 , so the graph has the line $y=\frac{2}{1}=2$ as a horizontal asymptote.

Denominator $=0$

$$
\begin{array}{rll}
x^{2}-1=0 & \text { Set denominator equal to zero. } \\
(x+1)(x-1)=0 & \text { Factor. } \\
x+1=0 \Longleftrightarrow x=-1 & \text { Set 1st factor equal to } 0 . \\
x-1=0 & \square x=1 & \text { Set 2nd factor equal to } 0 .
\end{array}
$$

Fxample 2 - Solution

The graph has the lines $x=-1$ and $x=1$ as vertical asymptotes.

b. $f(x)=\frac{x^{2}+x-2}{x^{2}-x-6}$
the degree of the numerator = the degree of the denominator Horizontal asymptote:

$$
y=\frac{1}{1}=1
$$

Vertical asvmptotes:

$$
\begin{gathered}
f(x)=\frac{x^{2}+x-2}{x^{2}-x-6}=\frac{(x-1)(x+2)}{(x+2)(x-3)}=\frac{x-1}{x-3}, \quad x \neq-2 \\
x=3
\end{gathered}
$$

Analyzing Graphs of Rational Functions

Analyzing Graphs of Rational Functions

Guidelines for Analyzing Graphs of Rational Functions

Let $f(x)=\frac{N(x)}{D(x)}$, where $N(x)$ and $D(x)$ are polynomials.

1. Simplify f, if possible.
2. Find and plot the y-intercept (if any) by evaluating $f(0)$.
3. Find the zeros of the numerator (if any) by solving the equation $N(x)=0$. Then plot the corresponding x-intercepts.
4. Find the zeros of the denominator (if any) by solving the equation $D(x)=0$. Then sketch the corresponding vertical asymptotes.
5. Find and sketch the horizontal asymptote (if any) by using the rule for finding the horizontal asymptote of a rational function.
6. Plot at least one point between and one point beyond each x-intercept and vertical asymptote.
7. Use smooth curves to complete the graph between and beyond the vertical asymptotes.

: Fxample 3 - Sketching the Graph of a Rational Function

Sketch the graph of $g(x)=\frac{3}{x-2}$ and state its domain.

Solution:
y-intercept:
$\left(0,-\frac{3}{2}\right)$, because $g(0)=-\frac{3}{2}$
x-intercept:
None, because $3 \neq 0$
Vertical asymptote: $\quad x=2$, zero of denominator
Horizontal asymptote: $y=0$ because degree of
$N(x)<$ degree of $D(x)$

Example 3 - Solution

Additional points:

Test interval	Representative x-value	Value of g	Sign	Point on graph
$(-\infty, 2)$	-4	$g(-4)=-0.5$	Negative	$(-4,-0.5)$
$(2, \infty)$	3	$g(3)=3$	Positive	$(3,3)$

The domain of g is all real numbers x except $x=2$.

Slant Asymptotes

Slant Asymptotes

If the degree of the numerator is exactly one more than the degree of the denominator, the graph of the function has a slant (or oblique) asymptote.
the graph of $f(x)=\frac{x^{2}-x}{x+1}$
has a slant asymptote

Slant Asymptotes

To find the equation of a slant asymptote, use long division.

$$
f(x)=\frac{x^{2}-x}{x+1}=\underbrace{x-2}+\frac{2}{x+1} .
$$

Slant asymptote

$$
(y=x-2)
$$

As x increases or decreases without bound, the remainder term $2 /(x+1)$ approaches 0 , so the graph of f approaches the line $y=x-2$.

:. .E. x xample 7 - A Rational Function with a Slant Asymptote

Sketch the graph of $f(x)=\frac{x^{2}-x-2}{x-1}$.

Solution:

Factoring the numerator as $(x-2)(x+1)$ allows you to recognize the x-intercepts.

Using long division

$$
f(x)=\frac{x^{2}-x-2}{x-1}=x-\frac{2}{x-1}
$$

allows you to recognize that the line $y=x$ is a slant asymptote of the graph.

Fxample 7 - Solution

y-intercept:
x-intercepts:
Vertical asymptote: $x=1$, zero of denominator
Slant asymptote: $\quad y=x$
Additional points:

Test interval	Representative x-value	Value of f	Sign	Point on graph
$(-\infty,-1)$	-2	$f(-2)=-1.33$	Negative	$(-2,-1.33)$
$(-1,1)$	0.5	$f(0.5)=4.5$	Positive	$(0.5,4.5)$
$(1,2)$	1.5	$f(1.5)=-2.5$	Negative	$(1.5,-2.5)$
$(2, \infty)$	3	$f(3)=2$	Positive	$(3,2)$

The graph is shown in Figure 2.46.

Figure 2.46

Applications

IFxample 8 - Cost-Benefit Model

A utility company burns coal to generate electricity. The cost C (in dollars) of removing $p \%$ of the smokestack pollutants is given by

$$
C=\frac{80,000 p}{100-p}
$$

for $0 \leq p<100$. You are a member of a state legislature considering a law that would require utility companies to remove 90% of the pollutants from their smokestack emissions. The current law requires 85% removal. How much additional cost would the utility company incur as a result of the new law?

IFxample 8 - Solution

Because the current law requires 85% removal, the current cost to the utility company is

$$
C=\frac{80,000(85)}{100-85} \approx \$ 453,333 . \quad \text { Evaluate } C \text { when } p=85
$$

If the new law increases the percent removal to 90%, the cost will be

$$
C=\frac{80,000(90)}{100-90}=\$ 720,000 . \quad \text { Evaluate } C \text { when } p=90
$$

Fxample 8 - Solution

So, the new law would require the utility company to spend an additional

$720,000-453,333=\$ 266,667$. Subtract 85% removal cost from 90\% removal cost.

