

RATIONAL FUNCTIONS

Copyright © Cengage Learning. All rights reserved.

What You Should Learn

- Find the domains of rational functions.
- Find the vertical and horizontal asymptotes of graphs of rational functions.
- Analyze and sketch graphs of rational functions.
- Sketch graphs of rational functions that have slant asymptotes.
- Use rational functions to model and solve real-life problems.

Introduction

A **rational function** is a quotient of polynomial functions. It can be written in the form

$$f(x) = \frac{N(x)}{D(x)}$$

where N(x) and D(x) are polynomials and D(x) is not the zero polynomial.

Example 1 – Finding the Domain of a Rational Function

Find the domain of the reciprocal function $f(x) = \frac{1}{x}$ and discuss the behavior of *f* near any excluded *x*-values.

Solution:

Because the denominator is zero when x = 0 the domain of *f* is all real numbers except x = 0.

Example 1 – Solution

cont'd

x	-1	-0.5	-0.1	-0.01	-0.001	$\rightarrow 0$
f(x)	-1	-2	-10	-100	-1000	$\rightarrow -\infty$

X	0 ←	0.001	0.01	0.1	0.5	1
f(x)	∞ \leftarrow	1000	100	10	2	1

$$f(x) \longrightarrow -\infty \text{ as } x \longrightarrow 0^-$$

f(x) decreases without bound as x approaches 0 from the left. The line x = 0 is a **vertical asymptote** of the graph of *f*. The line y = 0 is a **horizontal asymptote** of the graph of *f*.

$$f(x) \longrightarrow 0 \text{ as } x \longrightarrow -\infty$$

$$f(x) \longrightarrow \infty \text{ as } x \longrightarrow 0^+$$

f(x) increases without bound as *x* approaches 0 from the right.

f(x) approaches 0 as x decreases without bound.

f(x) approaches 0 as x increases without bound.

Definitions of Vertical and Horizontal Asymptotes

1. The line x = a is a **vertical asymptote** of the graph of *f* if

$$f(x) \longrightarrow \infty \quad \text{or} \quad f(x) \longrightarrow -\infty$$

as $x \longrightarrow a$, either from the right or from the left.

2. The line y = b is a **horizontal asymptote** of the graph of *f* if

$$f(x) \longrightarrow b$$

as $x \longrightarrow \infty$ or $x \longrightarrow -\infty$.

The graphs of
$$f(x) = \frac{1}{x}$$
 and $f(x) = \frac{2x + 1}{x + 1}$ are hyperbolas.

Vertical and Horizontal Asymptotes of a Rational Function

Let f be the rational function given by

$$f(x) = \frac{N(x)}{D(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

where N(x) and D(x) have no common factors.

- **1.** The graph of *f* has *vertical* asymptotes at the zeros of D(x).
- 2. The graph of *f* has one or no *horizontal* asymptote determined by comparing the degrees of N(x) and D(x).
 - **a.** If n < m, the graph of *f* has the line y = 0 (the *x*-axis) as a horizontal asymptote.

b. If n = m, the graph of *f* has the line $y = \frac{a_n}{b_m}$ (ratio of the leading coefficients) as a horizontal asymptote.

c. If n > m, the graph of f has no horizontal asymptote.

Example 2 – *Finding Vertical and Horizontal Asymptotes*

Find all vertical and horizontal asymptotes of the graph of each rational function.

a.
$$f(x) = \frac{2x^2}{x^2 - 1}$$
 b. $f(x) = \frac{x^2 + x - 2}{x^2 - x - 6}$

Solution:

a. the degree of the numerator = the degree of the denominator.

The leading coefficient of the numerator is 2 and the leading coefficient of the denominator is 1, so the graph has the line $y = \frac{2}{1} = 2$ as a horizontal asymptote.

Example 2 – Solution

cont'd

Denominator = 0

 $x^2 - 1 = 0$

(x+1)(x-1)=0

Set denominator equal to zero.

Factor.

x + 1 = 0 x = -1

 $x - 1 = 0 \quad \longrightarrow \quad x = 1$

Set 1st factor equal to 0.

Set 2nd factor equal to 0.

Example 2 – Solution

cont'd

The graph has the lines x = -1 and x = 1 as vertical asymptotes.

Example 2 – Solution

b.
$$f(x) = \frac{x^2 + x - 2}{x^2 - x - 6}$$

the degree of the numerator = the degree of the denominator Horizontal asymptote:

$$y = \frac{1}{1} = 1$$

Vertical asymptotes:

$$f(x) = \frac{x^2 + x - 2}{x^2 - x - 6} = \frac{(x - 1)(x + 2)}{(x + 2)(x - 3)} = \frac{x - 1}{x - 3}, \quad x \neq -2$$

x = 3

cont'd

Analyzing Graphs of Rational Functions

Analyzing Graphs of Rational Functions

Guidelines for Analyzing Graphs of Rational Functions

Let $f(x) = \frac{N(x)}{D(x)}$, where N(x) and D(x) are polynomials.

- **1.** Simplify *f*, if possible.
- **2.** Find and plot the *y*-intercept (if any) by evaluating f(0).
- **3.** Find the zeros of the numerator (if any) by solving the equation N(x) = 0. Then plot the corresponding *x*-intercepts.
- 4. Find the zeros of the denominator (if any) by solving the equation D(x) = 0. Then sketch the corresponding vertical asymptotes.
- **5.** Find and sketch the horizontal asymptote (if any) by using the rule for finding the horizontal asymptote of a rational function.
- **6.** Plot at least one point *between* and one point *beyond* each *x*-intercept and vertical asymptote.
- **7.** Use smooth curves to complete the graph between and beyond the vertical asymptotes.

Example 3 – Sketching the Graph of a Rational Function

Sketch the graph of
$$g(x) = \frac{3}{x-2}$$
 and state its domain.

Solution:

- *y-intercept*: $(0, -\frac{3}{2})$, because $g(0) = -\frac{3}{2}$
- *x-intercept*: None, because $3 \neq 0$
- *Vertical asymptote:* x = 2, zero of denominator

Horizontal asymptote: y = 0 because degree of N(x) < degree of D(x)

Example 3 – Solution

cont'd

Additional points:

Test interval	Representative <i>x</i> -value	Value of g	Sign	Point on graph
$(-\infty,2)$	-4	g(-4) = -0.5	Negative	(-4, -0.5)
$(2,\infty)$	3	g(3) = 3	Positive	(3, 3)

The domain of g is all real numbers x except x = 2.

Slant Asymptotes

If the degree of the numerator is exactly *one more* than the degree of the denominator, the graph of the function has a **slant** (or **oblique**) **asymptote**.

the graph of
$$f(x) = \frac{x^2 - x}{x + 1}$$

has a slant asymptote

To find the equation of a slant asymptote, use long division.

$$f(x) = \frac{x^2 - x}{x + 1} = \frac{x - 2}{x + 1} + \frac{2}{x + 1}$$

Slant asymptote

$$(y=x-2)$$

As x increases or decreases without bound, the remainder term 2/(x + 1) approaches 0, so the graph of *f* approaches the line y = x - 2.

Example 7 – A Rational Function with a Slant Asymptote

Sketch the graph of
$$f(x) = \frac{x^2 - x - 2}{x - 1}$$
.

Solution:

Factoring the numerator as (x - 2)(x + 1) allows you to recognize the x-intercepts.

Using long division

$$f(x) = \frac{x^2 - x - 2}{x - 1} = x - \frac{2}{x - 1}$$

allows you to recognize that the line y = x is a slant asymptote of the graph.

Example 7 – Solution

cont'd

- *y-intercept*: (0, 2), because f(0) = 2
 - *x-intercepts*: (-1, 0) and (2, 0)
 - *Vertical asymptote:* x = 1, zero of denominator
 - Slant asymptote: y = x

Additional points:

Test interval	Representative <i>x</i> -value	Value of <i>f</i>	Sign	Point on graph
$(-\infty, -1)$	-2	f(-2) = -1.33	Negative	(-2, -1.33)
(-1, 1)	0.5	f(0.5) = 4.5	Positive	(0.5, 4.5)
(1, 2)	1.5	f(1.5) = -2.5	Negative	(1.5, -2.5)
$(2,\infty)$	3	f(3) = 2	Positive	(3, 2)

Example 7 – Solution

cont'd

The graph is shown in Figure 2.46.

Applications

Example 8 – Cost-Benefit Model

A utility company burns coal to generate electricity. The cost C (in dollars) of removing p% of the smokestack pollutants is given by

$$C = \frac{80,000p}{100 - p}$$

for $0 \le p < 100$. You are a member of a state legislature considering a law that would require utility companies to remove 90% of the pollutants from their smokestack emissions. The current law requires 85% removal. How much additional cost would the utility company incur as a result of the new law?

Example 8 – Solution

Because the current law requires 85% removal, the current cost to the utility company is

 $C = \frac{80,000(85)}{100 - 85} \approx $453,333.$ Evaluate C when p = 85.

If the new law increases the percent removal to 90%, the cost will be

$$C = \frac{80,000(90)}{100 - 90} = \$720,000.$$
 Evaluate C when $p = 90.$

cont'd

So, the new law would require the utility company to spend an additional

720,000 - 453,333 = \$266,667.

Subtract 85% removal cost from 90% removal cost.