5.4

11/2

CHAPTE

Energy is the ability to do work or effect change.

Symbol: $\frac{J}{}$ Unit of measurement: joule

 $1 J = 1 N \times 1 m$

- The law of conservation of energy states that energy can neither be created nor destroyed; it can only be transferred or transformed. The total amount of energy in an isolated system always remains constant.
- Energy efficiency is the percentage of energy consumed by a machine or system that was transformed into useful energy.

Mathematical formula for calculating energy efficiency

Amount of useful energy Energy efficiency = Amount of energy consumed

Some forms of energy, with possible sources

Form of energy	Description	Examples of sources	
Radiation	Energy contained in and transported by electromagnetic waves.	Microwave oven • Sun Cellphone • Light bulb Radiographic equipment Fire • Radio • Television	
Chemical energy	Energy stored in molecular bonds.	Apple Candle wax Fossil fuels	
Wind energy	Energy resulting from the movement of the air.	• Wind	

Name: Cla	ass:[Oate:
-----------	-------	-------

INTEGRATION QUESTIONS

Energy and energy efficiency

- 1. In the examples below, does energy perform work (W) or provoke change (C)?
 - a) A man runs a marathon.

b) Clothing dries in the sun.

c) A woman lifts weights.

d) A house burns.

- 2. Name a form of energy that could be associated with the following objects.

a) A wind turbine. Wind energy, electrical energy.

b) Food.

Chemical energy, solar energy, mechanical energy, thermal energy.

- c) An MP3 player. Radiation, sound energy, electrical energy.
- In each of the situations below, specify whether there is a transfer or a transformation of energy.
 - a) A baseball player hits a ball.

Energy transfer.

b) Pasta provides the human body with energy.

Energy transformation.

c) Gas makes a car run.

Energy transformation.

d) A distribution substation supplies a village with electricity.

Energy transfer.

e) An electric baseboard produces heat.

Energy transformation.

🞝 🛦 A machine has an energy efficiency of 35 percent. What amount of energy must this machine consume to provide 68 kWh of useful energy?

Amount of energy consumed =
$$\frac{\text{Amount of useful energy}}{\text{Energy efficiency}} \times 100$$

= $\frac{68 \text{ kWh}}{35} \times 100$
= 194 kWh

The machine must consume 194 kWh of energy.

 $\mathbf{5}$. The amount of energy contained in a litre of gas is 3.6×10^7 joules. If only 12 percent of this energy is actually used to make a car move, what is the amount of useful energy per litre of gas?

Amount of useful energy =
$$\frac{\text{Energy efficiency} \times \text{Amount of energy consumed}}{100}$$

$$= \frac{12 \times 3.6 \times 10^7 \text{ J/L}}{100}$$

$$= 4.32 \times 10^6 \text{ J/L}$$

The amount of useful energy is 4.32×10^6 J/L of gas.

© ERP! Reproduction prohibited

Thermal energy

ME PAGES 73 10 75

CONCEPT REVIEW 10

Complete this concept review handout and keep it as a record of what you have learned.

Definitions :

- Thermal energy is the energy contained in a substance, determined by the number of particles in it and their temperature.
- Heat is the transfer of thermal energy between two environments with different temperatures. Heat always passes from the warmer to the cooler environment.
- Temperature is a measure of the degree of agitation of the particles of a substance.
- The specific heat capacity corresponds to the amount of thermal energy required to raise the temperature of one gram of a substance by one degree Celsius.

Factors affecting the thermal energy of a substance

Factor	Factor variation	Result
uye.	Increases.	Increases.
Number of particles	Decreases.	Decreases.
Temperature	Increases.	Increases.
	Decreases.	Decreases.

Mathematical formulas and units of measurement

ormula for in	dicating	the re	elationship between heat and thermal energy:
	where	Q	is heat (in J).
	***************************************	ΔE_{t}	is the variation in thermal energy (in).
Formula for c	alculating	heat	absorbed or released:
	where	Q	is the heat—in other words, the variation in thermal energy (in J).
$Q = mc\Delta T$	***************************************	m	is the mass (in g)
	where	c	is the specific heat capacity (in J/g°C).
		ΔΤ	is the temperature variation (in °C).
$\Delta T = T_f - T_i$	where	T _f	is the final temperature (in °C).
		T _i	is the initial temperature (in °C).
-			