Chapter 3

Real functions

CHALLENGE 3

- 3.1 Function
- **3.2** Polynomial functions
- 3.3 Absolute value function
- **3.4** Square root function
- 3.5 Step function
- **3.6** Piecewise function
- **3.7** Rational function

EVALUATION 3

CHALLENGE

1. Determine the domain and range of the following functions.

a)
$$f(x) = -2|x-3| + 1$$

a)
$$f(x) = -2|x-3|+1$$
 b) $f(x) = -\sqrt{-x+1}+1$ c) $f(x) = \frac{2}{3(x-1)}-1$

$$f(x) = \frac{2}{3(x-1)} - 1$$

$$dom f = \mathbb{R}$$

$$dom f =]-\infty, 1]$$

$$ran f =]-\infty, 1]$$

$$ran f =]-\infty, 1]$$

$$dom f =]-\infty, 1]$$

$$ran f =]-\infty, 1]$$

$$dom f = \mathbb{R} \setminus \{1\}$$

$$ran f = \mathbb{R} \setminus \{-1\}$$

2. Consider the functions f(x) = 2x - 1 and $g(x) = 3x^2 - 2x + 1$. Find the rule of

a)
$$g \circ f$$

$$g \circ f(x) = 3(2x-1)^2 - 2(2x-1) + 1$$

$$= 12x^2 - 16x + 6$$
b) $f \circ g$

$$f \circ g(x) = 2(3x^2 - 2x + 1) - 1$$

$$= 6x^2 - 4x + 1$$

b)
$$f \circ g$$

$$f \circ g(x) = 2(3x^2 - 2x + 1) - 1$$

$$= 6x^2 - 4x + 1$$

3. Determine the zeros of the following functions.

a)
$$f(x) = -2|x-1| + 6$$

b)
$$f(x) = -2\sqrt{x-3} + 6$$

a)
$$f(x) = -2|x-1| + 6$$
 b) $f(x) = -2\sqrt{x-3} + 6$ c) $f(x) = \frac{-3}{2(x+1)} + 1$

-2 and 4

- **4.** What are the equations of the asymptotes of the function $f(x) = \frac{2}{5(x-1)} 4$? The lines defined by the equations x = 1 and y = -4.
- **5.** Study the sign of the following functions.

a)
$$f(x) = 4 \left| -\frac{1}{2}(x-1) \right| - 4$$
 $f(x) \le 0$ if $x \in [-1, 3]$; $f(x) \ge 0$ if $x \in [-\infty, -1] \cup [3, +\infty[$

b)
$$f(x) = -2\sqrt{x+3} + 4$$
 $f(x) \le 0$ if $x \in [1, +\infty[; f(x) \ge 0 \text{ if } x \in [-3, 1]]$

c)
$$f(x) = \frac{4}{x-3} + 2$$
 $f(x) \le 0 \text{ if } x \in [1, 3[; f(x) \ge 0 \text{ if } x \in]-\infty, 1] \cup [3, +\infty[$

6. Describe the variation of the following functions.

a)
$$f(x) = -\frac{2}{3}|x-2|+4$$
 frower]-\infty, 2]; frower [2, +\infty]

b)
$$f(x) = -\frac{1}{2}\sqrt{-2(x-1)} + 1 \frac{f > over]-\infty, 1]$$

c)
$$f(x) = \frac{2}{x-1} + 1$$
 $f > over \mathbb{R} \setminus \{1\}$

- 7. Find the rule of
 - a) an absolute value function whose graph has a vertex at V(-2, 6) and passes through the point A(1, -3). y = -3|x + 2| + 6
 - b) a rational function passing through the point A(3, 4) with asymptotes defined by the lines x = 1 and y = 2. $y = \frac{4}{x-1} + 2$
 - c) a square root function whose graph has a vertex at V(-4, -2) and passes through the point A(5, 4). $y = 2\sqrt{x + 4} 2$

3.1 Function

ACTIVITY 1 Recognizing a function

- a) Consider the mapping diagram of the relation R represented on the right.
 - 1. What is the source set? $A = \{2, 3, 4, 5\}$
 - 2. What is the target set? ______ B = [4, 5, 6, 7, 8]
 - 3. Complete: An element x from set A is in relation with an element y from set B if x is ____ a divisor ___ of y.
 - 4. Is there an element from the source set that is in relation with more than one element from the target set? ______Yes
 - 5. Is this relation a function? Justify your answer.

No, 2 is in relation with three elements and 4 with two elements.

- b) Consider the Cartesian graph of the relation S represented on the right. The point (1, 3) means that the element 1 from the source set is in relation with the element 3 from the target set.
 - 1. What is the image of 4? ______1
 - 2. What is the antecedent of 2? ____0

 - 4. Is this relation a function? Justify your answer.

Yes, since each element from the source set is in relation to at most one element from the

target set.

DEFINITION OF A FUNCTION

A relation given by a source set A to a target set B is a function if each element from A is
associated with at most one element from B.

Mapping diagram

Given the mapping diagram of a relation, this relation is a function if, from each element of the source set, at most one arrow is drawn.

S

Cartesian graph

Given the Cartesian graph of a relation, this relation is a function if any vertical line intersects the graph of this relation in at most one point

Set of ordered pairs

Given a relation's set of ordered pairs, this relation is a function if the first coordinate of each pair verifying the relation appears only once.

 $G_{n} = \{(\underline{a}, 0), (b, 1), (\underline{a}, 2)\}$ R is not a function.

1. In each of the following cases, indicate if the relation is a function.

a)

b)

c)
$$G = \{(0, 0), (1, -1), (1, 1)\}$$

d)

e)

No

f)

No

g) $G = \{(4,3), (5,3), (6,3)\}$ **h)**

i)

No

j)

k)

I)

ACTIVITY 2 Properties of functions

Consider the function f represented on the right.

- a) What is the domain of f?
- [-3, 3] **b)** What is the range of f? _____
- c) What are the zeros of f? _____ -2. 0. 2 and 4
- **d)** What is the initial value of f? ____
- **e)** Over what interval is the function f
 - 1. positive? $[-2, 0] \cup [2, 4]$ 2. negative? $[-3, -2] \cup [0, 2] \cup [4, 5]$

- 1. increasing? _____[-3, -1] ∪ [1, 3]
- $_$ 2. decreasing? $_$ [-1, 1] \cup [3, 5]

- g) What is, for function f, its

 - 1. absolute maximum? 3 2. absolute minimum? -3

PROPERTIES OF FUNCTIONS

Consider the function f represented on the right.

The domain of a function f is the subset of the elements of the source set which have an image in f.

$$dom f = [-2, 4]$$

 The range of a function f is the subset of the elements of the target set which are images by f

$$ran f = [-3, 4]$$

The zeros of the function f are the values of x for which the function is equal to zero. The zeros of f are: -1, 1 and 3.

Studying the sign of a function consists of finding the values of x for which the function is positive or those for which the function is negative.

$$f(x) \ge 0 \text{ if } x \in [-2, -1] \cup [1, 3].$$

 $f(x) \le 0 \text{ if } x \in [-1, 1] \cup [3, 4].$

Studying the variation of a function consists of finding the values of x for which the function is increasing or those for which the function is decreasing.

f is increasing if $x \in [0, 2]$.

f is decreasing if $x \in [-2, 0] \cup [2, 4]$.

The absolute maximum (or minimum) of a function is the highest image (or the lowest image) when it exists.

 $\max f = 4$, $\min f = -3$

2. Consider the function *f* represented on the right. Determine

- a) 1. dom f = [-3, 4] 2. ran f = [-3, 3]
- **b)** 1. the zeros of f: _____ -1 and 3
 - 2. the initial value: _____

1. positive: <u>[-3, -1] ∪ [3, 4]</u> 2. negative: <u>[-1, 3]</u>

- 1. increasing: [1, 4]
- 2. decreasing:_
- [-3, 1]

- **e)** 1. the maximum of *f*: ____3
- 2. the minimum of f: -3

3. Draw the graph of a function satisfying the following conditions.

- 1. dom f = [-1, 4].
- 2. ran f = [-2, 3].
- 3. The zeros of f are: 1 and 3.
- 4. The initial value is -1.
- 5. The function is negative when $x \in [-1, 1] \cup [3, 4]$.
- 6. The function is increasing when $x \in [-1, 2]$ and decreasing when $x \in [2, 4]$.
- 7. $\max f = 3$ and $\min f = -2$.

4. Study the following functions by completing the table below.

	a)	b)	c) x	d) 1 x
domain	R	[-2, +∞[[-2 , +∞[[-2, 3]
range	[-2, +∞[]–∞, 2]]-∞, 2]	[-2, 2]
zeros	0 and 2	-1, 1 and 3	2	-1 and 1
initial value	0	-1	1	2
$f(x) \ge 0 \text{ if } x \in$]-∞, 0] ∪ [2, +∞[[-2, -1] ∪ [1, 3]	[-2, 2]	[-1, 1]
$f(x) \le 0 \text{ if } x \in$	[0, 2]	[-1, 1] ∪ [3, +∞[[2, +∞[[-2, -1] ∪ [1, 3]
$f \nearrow \text{ if } x \in$	[1, +∞[[0, 2]	never	[-2, 0]
$f \vee \text{if } x \in$]–∞, 1]	[-2, 0] ∪ [2, +∞[[-2 , +∞[[0, 3]
extrema	min f = -2	max f = 2	max f = 2	max f = 2, min f = +2

Determine the domain and range of the following functions.

a)

b)

 $dom = \mathbb{R}$

ran = Z

 $dom = \mathbb{R}$

ran =]-∞, 2[

Let s represent the side of a square and A represent its area.

- a) 1. What is the rule of the function f that associates, to the square's side s, its area? $A = s^2$
 - 2. Complete the table of values below and represent the function fin the Cartesian plane ①.

Side S	0	0.5	1	1.5	2.
Area A	0	0.25	1	2.25	4

b) 1. What is the rule of the inverse f^{-1} that associates, to the square's area A, its side length s?

2. Complete the table of values below and represent the function f^{-1} in the Cartesian plane ②.

Area A	0	0.25	1	2.25	4
Side S	0	0.5	1	1.5	2

3. Explain why the inverse f^{-1} is a function. Any vertical line only intersects the curve at a maximum of one

point.

- 1. Reproduce the two graphs in the same Cartesian plane 3 where the axes are not labeled.
 - 2. Verify that the graphs of f and f^{-1} are symmetrical about the bisector of the 1st quadrant.

ACTOVOTY 4 Functions whose inverse is not a function

- a) Consider the sets A and B on the right, and the function f of A toward B with the rule $f(x) = x^2$.
 - 1. Use a mapping diagram to represent function f.
 - 2. Deduce the mapping diagram of the inverse f^{-1} .
 - 3. Explain why f^{-1} is not a function.

4 is in relation with two elements -2 and 2 by f^{-1} . Therefore, f^{-1} is not a function.

- **b)** Consider the table of values on the right of a function *f*.
 - 1. Deduce a table of values for f^{-1} .
 - 2. Explain why f^{-1} is not a function.

1 is in relation with two elements -1 and 1.

X	– 2	-1	0	1	2
f(x)	2	1	0	1	2
		_			
X	2	1	0	1	2

- c) The function f on the right has the rule $f(x) = x^2$.
 - 1. Deduce, by symmetry about the bisector of the 1st quadrant, the graph of the inverse f^{-1} .
 - 2. Explain why the inverse f^{-1} is not a function.

 There is a vertical line that intersects the graph of f^{-1} at 2 points.
 - 3. True or false?

The inverse of f is not a function when a horizontal line can be drawn to intersect the graph of f at more than one point. <u>True</u>

The inverse of a function is not necessarily a function.

000000

Ex.: $f: A \to B$ $x \mapsto y = 2x$

$$\begin{bmatrix} -1 & 0 & 0 & 1 \\ 1 & 2 & 2 \\ 3 & 2 & 4 & B \end{bmatrix}$$

 f^{-1} is a function.

$$dom f = ran f^{-1} = \{0, 1, 2\}$$

$$ran f = dom f^{-1} = \{0, 2, 4\}$$

Ex.: $f: A \to B$ $x \mapsto y = x^2$

 f^{-1} is not a function.

$$dom f = ran f^{-1} = \{-1, 0, 1, 2\}$$

$$ran f = dom f^{-1} = \{0, 1, 4\}$$

• For any function f, we have:

$$dom f = ran f^{-1}$$

and $ran f = dom f^{-1}$

• The Cartesian graphs of a function and its inverse are symmetrical about the line with the equation y = x.

 f^{-1} is a function.

 f^{-1} is not a function.

• The inverse of a function f is not a function when a horizontal line can be drawn to intersect the graph of f at more than one point.

- **6.** Consider the mapping diagram of a function *f*.
 - a) Deduce the mapping diagram of f^{-1} .
 - **b)** Explain why f^{-1} is a function.

There is at most one arrow from each element of the source set B.

- domf. [-2, -1, 0, 1, 2]
 domf⁻¹. [-8,-1, 0, 1, 8]
- 2. ran f. [-8,-1, 0, 1, 8] 4. ran f⁻¹. [-2, -1, 0, 1, 2]

1. $\operatorname{dom} f = \operatorname{ran} f^{-1}.$

2.
$$ran f = dom f^{-1}$$
.

7. Indicate which of the following functions have an inverse that is also a function.

a)

Yes

c)
$$h = \{(-2, -4), (-1, -2), (0, 0), (1, 2), (2, 4)\}$$
 d)

No

- **3.** For each of the following functions,
 - 1. deduce the graph of the inverse.
 - 2. indicate if the inverse is a function.

a)

b)

Yes

c)

Yes

e)

No

f)

No

ACTIVITY 5 Rule of the inverse

A salesman in a store receives a weekly base salary of \$250 and a sales commission of \$10 per item sold for the week.

- a) Let a represent the number of items sold for the week, and s represent the total weekly salary. Determine the rule of
 - 1. the function f which gives the total salary s as a function of the number of items sold a. s = 250 + 10a
 - 2. the function f^{-1} which associates, to a given salary s, the number of items sold a. $\frac{s-250}{10}$
- **b)** Complete the table of values on the right for the functions f and f^{-1} .

£_	а	0	5	10	15	20	
10	s	250	300	350	400	450	7,

- Marie

ا جسمها

man pair

RULE OF THE INVERSE

Given the function f with the rule: y = 2x + 6. To determine the rule of the inverse f^{-1} ,

1. we isolate x in the rule of f.

$$y=2x+6$$

$$2x = y - 6$$

$$x = \frac{1}{2}y - 3$$

2. we switch the letters x and y.

$$y = \frac{1}{2}x - 3$$

 f^{-1} therefore has the rule: $y = \frac{1}{2}x - 3$.

We interchange the letters x and y to respect the convention of function notation which assigns x as elements of the source set and y as elements of the target set.

9. For each of the following rules of functions, find the rule of its inverse.

a)
$$y = 5x$$

$$y=\frac{x}{5}$$

b)
$$y = 3x - 6$$

$$y=\frac{x}{3}+2$$

c)
$$y = -2x + 10$$

$$y=\frac{-x}{2}+5$$

d)
$$y = 0.1x + 100$$

$$y = 10x - 1000$$

e)
$$y = \frac{2}{3}x - 6$$

$$y = \frac{3}{2}x + 9$$

f)
$$y = -\frac{3}{4}x + 12$$

 $y = \frac{-4}{2}x + 16$

- **10.** A capital of \$1000 is invested on January 1st, 2009 at an annual interest rate of 10%. Find the rule which associates
 - a) a given number of elapsed years t since the beginning, to the accumulated capital C.

C = 1000 + 100t

- b) a given accumulated capital C, to the number of elapsed years t. t = 0.01C 10
- **11.** A car's gas tank initially contains 60 litres of gas. This car consumes on average 12 litres/100 km. Find the rule of the function which associates,
 - a) a given distance traveled d (in km) to the quantity q of gas remaining in the tank. q = -0.12d + 60
 - b) a given quantity q of gas remaining in the tank, to the distance traveled d (in km). $d = -\frac{25}{2}q + 500$

ACTIVITY 6 Composition of functions

Consider the function f defined by f(x) = x + 5 and the function g defined by the rule g(x) = 2x.

- a) Determine
 - 1. f(1) **_6**
- _____ 2. g(f(1)) <u>12</u>
- **b)** The composition of f by g, written gof is defined by $g \circ f(x) = g(f(x))$.

 - 2. Determine the rule of $g \circ f$. $g \circ f(x) = g(f(x)) = g(x+5) = 2x+10$
- c) Determine
 - 1. g(1) 2
- 2. f(g(1)) 7
- **d)** The composition of g by f, written $f \circ g$, is defined by $f \circ g(x) = f(g(x))$.
 - 1. Calculate $f \circ g(1)^{7}$
 - 2. Determine the rule of $f \circ g$. $f \circ g(x) = f(g(x)) = f(2x) = 2x + 5$
- e) Compare the rules of gof and fog. $g \circ f(x) \neq f \circ g(x)$

COMPOSITION OF FUNCTIONS

- Given two functions f and g,
 - the composition of f by g, written $g \circ f$, is defined by the rule:

$$g\circ f(x)=g(f(x))$$

- the composition of g by f, written $f \circ g$, is defined by the rule:

$$f \circ g(x) = f(g(x))$$

Ex.: Given f(x) = x + 3 and $g(x) = x^2$, we have:

$$g \circ f(1) = g(f(1)) = g(4) = 16,$$

$$g \circ f(x) = g(x+3) = (x+3)^2$$

$$f \circ g(1) = f(g(1)) = f(1) = 4$$

 $f \circ g(x) = f(x^2) = x^2 + 3$

Note that, in general, $g \circ f(x) \neq f \circ g(x)$.

- **12.** Consider the functions f(x) = 3x 5 and g(x) = -2x + 8. Determine

 - a) $g \circ f(2) = 6$ b) $f \circ g(-1) = 25$ c) $f \circ g(4) = -5$
- - d) $g \circ f(0) = 18$ e) $g \circ g(7) = 20$ f) $f \circ g(-5) = 49$

- **13.** Consider the functions f(x) = -2x + 5 and g(x) = 4x 3. Determine the rules of the following functions.
 - a) $f \circ g(x) = f(g(x)) = f(4x 3) = -2(4x 3) + 5 = -8x + 11$
 - **b)** $g \circ f(x) = g(f(x)) = g(-2x + 5) = 4(-2x + 5) 3 = -8x + 17$
 - c) $f \circ f(x) = f(f(x)) = f(-2x + 5) = -2(-2x + 5) + 5 = 4x 5$
 - d) $g \circ g(x) = g(g(x)) = g(4x 3) = 4(4x 3) 3 = 16x 15$
- **14.** Consider the functions f(x) = 2x + 3 and g(x) = 3x 2.
 - a) Determine the rule of
 - 1. $g \circ f$. $g \circ f(x) = 6x + 7$

2. $f \circ g$. $f \circ g(x) = 6x - 1$

- **b)** Verify that $g \circ f(x) \neq f \circ g(x)$.
- **15.** Consider f(x) = x + 5 and g(x) = x 2. Verify that, $g \circ f(x) = f \circ g(x)$. $g\circ f(x)=x+3,\,f\circ g(x)=x+3$
- **15.** Consider the function f(x) = 2x + 8.
 - a) Determine the rule of the inverse f^{-1} . $f^{-1}(x) = \frac{1}{2}x 4$
 - **b)** 1. Determine the rule of the composite $f^{-1} \circ f$.

$$f^{-1} \circ f(x) = f^{-1}(f(x)) = f^{-1}(2x + 8) = \frac{1}{2}(2x + 8) - 4 = x$$

2. Determine the rule of the composite $f \circ f^{-1}$.

$$f \circ f^{-1}(x) = f(f^{-1}(x)) = f\left(\frac{1}{2}x - 4\right) = 2\left(\frac{1}{2}x - 4\right) + 8 = x$$

- 3. Verify that $f^{-1} \circ f(x) = f \circ f^{-1}(x) = x$.
- c) Repeat this exercise with the function f(x) = -5x + 10.

$$f^{-1}(x) = -\frac{1}{5}x + 2$$
; $f^{-1} \circ f(x) = x$; $f \circ f^{-1}(x) = x$

- **17.** Consider the functions f(x) = x + 5 and f(x) = 3x + 4.
 - a) Determine the rule of the functions f^{-1} and g^{-1} .

$$f^{-1}(x) = x - 5$$
 $g^{-1}(x) = \frac{1}{3}x - \frac{4}{3}$

- **b)** Determine

 - 1. $f \circ f^{-1}(x) = \underbrace{f(f^{-1}(x)) = f(x-5) = x 5 + 5 = x}_{g(g^{-1}(x)) = g\left(\frac{1}{3}x \frac{4}{3}\right) = 3\left(\frac{1}{3}x \frac{4}{3}\right) + 4 = x}_{g(g^{-1}(x)) = g\left(\frac{1}{3}x \frac{4}{3}\right) = 3\left(\frac{1}{3}x \frac{4}{3}\right) + 4 = x}$
 - 3. $f \circ g(x) = f(g(x)) = f(3x+4) = 3x+4+5=3x+9$
 - 4. $g \circ f(x) = g(f(x)) = g(x+5) = 3(x+5) + 4 = 3x + 19$
- c) Determine
 - 1. $(f \circ g)^{-1}(x) = \frac{\frac{1}{3}x 3}{3}$ 2. $(g \circ f)^{-1}(x) = \frac{\frac{1}{3}x \frac{19}{3}}{3}$ 3. $g^{-1} \circ f^{-1}(x) = \frac{\frac{1}{3}x \frac{19}{3}}{3}$ 4. $f^{-1} \circ g^{-1}(x) = \frac{\frac{1}{3}x \frac{19}{3}}{3}$
- **d)** What can you deduce? $(f \circ g)^{-1}(x) = g^{-1} \circ f^{-1}(x)$ and $(g \circ f)^{-1}(x) = f^{-1} \circ g^{-1}(x)$

18. Consider the functions $f(x) = x^2 + 4x - 5$ and $g(x) = 2x - 1$.
a) Determine the rule of the composite for

 $f \circ g(x) = f(g(x)) = f(2x - 1) = (2x - 1)^2 + 4(2x - 1) - 5 = 4x^2 + 4x - 8$

b) Determine $f \circ g(2)$ in two different ways:

- 1. by finding f(g(2)) = f(3) = 16
- 2. by using the rule found in a). $4(2)^2 + 4(2) 8 = 16$

19. In Quebec, every purchase is taxable. The goods and services tax (GST) is 5 %.

The Quebec sales tax (QST) is 7.5 %.

Let f be the function which associates a given purchase amount x to the amount y including GST. Let g be the function which associates a given purchase amount x to the amount y including QST.

a) Determine the rule of the function

- 1. f: y = 1.05x 2. g: y = 1.075x
- **b)** 1. Determine the rule of the function $g \circ f$. $g \circ f(x) = 1.12875x$
 - 2. Determine the rule of the function $f \circ g$. $f \circ g(x) = 1.12875x$
- c) Compare the rules of the functions $g \circ f$ and $f \circ g$. What can you conclude?

 The rules are equal. To calculate the final price of a product, it doesn't matter if you apply the GST first and then the QST, or the QST first and then the GST.
- d) 1. What is the final price of a product with a \$39.80 price tag? ______ \$44.92
 - 2. What is the initial price tag of a product if the final cost paid is \$56.44? **\$50**

20. The weekly salary of a sporting goods store salesman includes a base salary of \$300 per week and a \$40 bonus for every item sold.

During the holidays, the owner of the store decides to give each employee a 4% bonus on their weekly salary.

Let f be the function which gives the regular weekly salary y as a function of the number of items sold x.

Let g be the function which gives the bonus holiday weekly salary y as a function of the regular weekly salary x.

a) Determine the rule of the function

1. f: y = 40x + 300 2. g: y = 1.04x 3. $g \circ f: y = 41.6x + 312$

b) What will an employee's salary be, during the holidays, if he sells 4 items during the week? _____\$478.40

c) How many items did an employee sell if he receives a weekly salary of \$561.60 during the holidays? ______ 6 items

ACTIVITY 7 Operations between functions

Consider the functions $f(x) = x^2 - 9$ and g(x) = x + 3. Determine

a)
$$f(x) + g(x) = x^2 + x - 6$$

b)
$$f(x) - g(x) = \underline{x^2 - x - 12}$$

d) $\frac{f(x)}{g(x)} = \underline{x - 3}$

c)
$$f(x) \times g(x) = \frac{x^3 + 3x^2 - 9x - 27}{x^3 + 3x^2 - 9x - 27}$$

$$d) \quad \frac{f(x)}{g(x)} = \underline{\qquad \qquad x-3}$$

OPERATIONS BETWEEN FUNCTIONS

Given two real functions f and g, we have:

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x)=f(x)-g(x)$$

$$(f \cdot g)(x) = f(x) \times g(x)$$

$$\frac{f}{g}(x) = \frac{f(x)}{g(x)}$$

Ex.. Given $f(x) = x^2 + 2x - 15$ and g(x) = 2x - 6, we have:

$$(f+g)(x) = f(x) + g(x) = (x^2 + 2x - 15) + (2x - 6) = x^2 + 4x - 21.$$

$$(f-g)(x) = f(x) - g(x) = (x^2 + 2x - 15) - (2x - 6) = x^2 - 9.$$

$$(f \cdot g)(x) = f(x) \times g(x) = (x^2 + 2x - 15)(2x - 6) = 2x^3 - 2x^2 - 42x + 90$$

$$\frac{f}{g}(x) = \frac{f(x)}{g(x)} = \frac{x^2 + 2x - 15}{2x - 6} = \frac{(x - 3)(x + 5)}{2(x - 3)} = \frac{x + 5}{2}.$$

21. Consider the four functions f, g, h, and i. Let $f(x) = x^2 + x - 6$, g(x) = 2x - 4, $h(x) = x^2 - 9$ and $i(x) = 3x^2 - 12$.

a)
$$(f+g+h)(x) = 2x^2 + 3x - 19$$

a)
$$(f+g+h)(x) = 2x^2 + 3x - 19$$
 b) $(f-g+h)(x) = 2x^2 - x - 11$

c)
$$(f \cdot g)(x) = 2x^3 - 2x^2 - 16x + 24$$

d)
$$(g \cdot h)(x) = \underline{2x^3 - 4x^2 - 18x + 36}$$

e)
$$(f-h-i)(x) = \frac{-3x^2+x+15}{x^2+x+15}$$

f)
$$\left(\frac{f}{g}\right)(x) = \frac{\frac{x+3}{2}(x \neq -3)}{2}$$

g)
$$\left(\frac{f \cdot g}{i}\right)(x) = \frac{\frac{2(x+3)(x-2)}{3(x+2)} (x \neq 2)}{x \neq 2}$$

a)
$$(f+g+h)(x) = \frac{2x^2 + 3x - 19}{2x^3 - 2x^2 - 16x + 24}$$

b) $(f-g+h)(x) = \frac{2x^3 - 4x^2 - 18x + 36}{2x^3 - 4x^2 - 18x + 36}$
e) $(f-h-i)(x) = \frac{-3x^2 + x + 15}{2}$
f) $(\frac{f}{g})(x) = \frac{\frac{2(x+3)(x-2)}{3(x+2)}}{(x+2)}$
h) $(\frac{g \cdot h}{f})(x) = \frac{2(x-3)}{(x+2)} (x \neq 2)$

- 22. The condominium association of a building establishes the following fees to be charged to each of its condo owners.
 - Monthly condo fees: \$225
 - Monthly fees for renovations: \$80
 - Municipal taxes paid at the beginning of the year: \$1500
 - a) Determine the rule of the function f which gives the cost y of condo fees as a function of the number x of months. y = 225x
 - b) Determine the rule of the function g which gives the total cost y of renovation fees and municipal taxes as a function of the number x of months. y = 80x + 1500
 - c) Determine the rule of the function f + g and interpret this rule. y = 305x + 1500f+g gives the total fees charged to a condo owner as a function of the number x of months.
 - d) What is the total amount of fees paid by a condo owner after 8 months of occupancy?

3.2 Polynomial functions

ACTIVITY 1 Polynomial functions

a) Among the following functions, indicate which ones are polynomial functions. If it is a polynomial function, indicate its degree.

1.
$$P(x) = -5x + 8$$
 Yes, 1st degree

1.
$$P(x) = -5x + 8$$
 Yes, 1st degree 2. $P(x) = -4x^2 - 5x$ Yes, 2nd degree

3.
$$P(x) = \frac{5}{x} + 3$$
 No 4. $P(x) = -3$ Yes, degree 0

$$P(x) = -3$$
 Yes, degree 0

5.
$$P(x) = \sqrt{x} - 7$$
 No

5.
$$P(x) = \sqrt{x} - 7$$
 No 6. $P(x) = x^3 + 4x^2 - 5x + 3$ Yes, 3rd degree

b) Represent the following polynomial functions in the Cartesian plane on the right.

1.
$$f(x) = 2$$

2.
$$g(x) = 3x - 2$$

1.
$$f(x) = 2$$
 2. $g(x) = 3x - 2$ 3. $h(x) = x^2 + 2x - 1$

POLYNOMIAL FUNCTIONS

A polynomial function is any function with a polynomial for a rule.

Ex.:
$$f(x) = 2$$
 is a zero degree polynomial function.

$$g(x) = 2x + 3$$
 is a 1st degree polynomial function.

$$h(x) = x^2 - 4x + 3$$
 is a 2nd degree polynomial function.

The following table classifies polynomial functions according to their degree.

Degree	Basic polynomial function	Transformed polynomial function	Name
0	f(x)=1	$f(x) = b$ where $b \in \mathbb{R}$	constant function
		$f(x) = ax$ where $a \in \mathbb{R}^*$	direct variation linear function
1	f(x)=x	$f(x) = ax + b$ where a , $b \in \mathbb{R}^*$	partial variation linear function
2	$f(x)=x^2$	$f(x) = ax^2 + bx + c$ where $a \in \mathbb{R}^*$	quadratic function
3	$f(x)=x^3$	$f(x) = ax^3 + bx^2 + cx + d$ where $a \in \mathbb{R}^*$	cubic function

ACTIVITY 2 Study of a constant function

Consider the function f given by the rule y = 3.

- a) Represent this function in the Cartesian plane.
- **b)** Determine
 - 1. $\operatorname{dom} f =$ _____ 2. ran f = {3}
 - 3. the zeros of f if they exist. **No zeros**
 - 4. the y-intercept._____
 - 5. the sign of f $f(x) \ge 0$ over \mathbb{R}

c) What is the rate of change between two random points on the graph of f? It is zero.

CONSTANT FUNCTIONS

- A constant function is a zero degree polynomial function. It is described by a rule of the form: f(x) = b, $b \in \mathbb{R}$
- The Cartesian graph of a constant function is a horizontal line with the equation y = b. Study of a constant function
 - $dom f = \mathbb{R}$
 - ran $f = \{b\}$
 - The constant function has no zero unless b = 0.
 - -f(x)>0 over \mathbb{R} if b>0
 - f(x) < 0 over \mathbb{R} if b < 0
 - $\max f = \min f = b$
- The rate of change of any constant function is zero.
- represented by the x-axis.

- 1. A ski resort is open 120 days during the ski season. The cost of a season pass is \$450. Consider the function f which gives the total cost y as a function of the number x of days of skiing.
 - a) How much does it cost to ski for 12 days? ____
 - **b)** What is the rule of function f? _____ y = 450
 - c) Represent function f in the Cartesian plane.
 - d) Determine

78

- 1. dom f = [0, 120]
- 2. ran $f = _{--}$

f(x) = b

ACTIVITY 3 Study of a linear function

Consider the functions f(x) = 3x - 2 and $g(x) = -\frac{1}{2}x + 2$.

- a) Represent the functions f and g in the Cartesian plane on the right.
- **b)** Study the functions f and g and complete the following table.

plu mit and	Function f	Function g
Domain	R	R
Range	R	R
Zero	2/3	4
Initial value	-2	2
Sign	$f(x) \geq 0 \text{ if } x \in \left[\frac{2}{3}, +\infty\right]$	$f(x) \ge 0 \text{ if } x \in J-\infty, 4$
	$f(x) \leq 0 \text{ if } x \in \left] -\infty, \frac{2}{3} \right]$	$f(x) \leq 0 \text{ if } x \in [4, +\infty[$
Variation	f is increasing over R	g is decreasing over R

ACTIVITY 4 Transformations of the basic linear function

The basic 1st degree linear function f(x) = x is represented on the right.

- a) 1. Draw the image of function f by the vertical scale change $(x, y) \rightarrow (x, 3y)$ to obtain the graph of function g.
 - 2. What is the rule of the function g? g(x) = 3x
- b) 1. Draw the image of function g by the vertical translation $(x, y) \rightarrow (x, y 2)$ to obtain the graph of function h.
 - 2. What is the rule of the function h? h(x) = 3x 2

C

LINEAR FUNCTION

A linear function is a 1st degree polynomial function. It is described by a rule of the form:

$$f(x) = ax + b \quad a \in \mathbb{R}^*$$

A linear function represents a situation where the rate of change is constant. a represents the rate of change and b represents the initial value (y-intercept).

Ex.:
$$f(x) = \frac{1}{2}x - 1$$

	Function f	Function g
Domain	R	R
Range	R	\mathbb{R}
Zero	2	1.5
Initial value	-1	3
Sign	$f(x) \le 0 \text{ if } x \le 2$	$f(x) \ge 0 \text{ if } x \le 1.5$
	$f(x) \ge 0 \text{ if } x \ge 2$	$f(x) \le 0 \text{ if } x \ge 1.5$
Rate of change	1/2	-2
Variation	increasing function	decreasing function

- The function is increasing when the rate of change is positive.
 - The function is decreasing when the rate of change is negative.
- 2. A video game software company establishes that its monthly revenue corresponds to 30% of the amount of sales. The company's fixed monthly operating costs are \$12 000 and the company cannot sell for more than \$80 000 in one month.

- a) What is the rule which gives the net revenue y as a function of the amount x of sales? $y = 0.3 \times -12000$
- b) Represent the function in the Cartesian plane.
- c) Determine for this function
 - 1. the domain. [0, 80 000]
- 2. the range. <u>I-12 000, 12 000</u>]

- d) Determine and interpret
 - 1. the zero of the function. \$40 000. Amount of sales to have a zero net revenue.
 - 2. the initial value of the function. _\$ -12 000. For zero sales, the loss is \$12 000.

- e) Study the sign of this function. $f(x) \le 0$ over [0, 40 000]; $f(x) \ge 0$ over [40 000, 80 000].
- f) Study the variation of this function. f > over [0, 80 000].
- **3.** The graph of a linear function passes through the points A(3, 3) and B(5, -3). Determine the interval over which this function is positive. $]{-\infty}$, 4]

ACTIVITY 5 Transformation of the basic quadratic function

The basic quadratic function $f(x) = x^2$ can be transformed into a quadratic function with a rule of the form $g(x) = a(x - h)^2 + k$.

a) Consider the basic quadratic function $f(x) = x^2$ and the quadratic function $g(x) = ax^2$.

Represent, in the same Cartesian plane, the functions $g_1(x) = 2x^2$, $g_2(x) = \frac{1}{2}x^2$ and $g_3(x) = -x^2$ and explain how to deduce the graph of g from the graph of f when

- 1. a > 1: by a vertical stretch.
- 2. 0 < a < 1: by a vertical reduction.
- 3. a = -1: by a reflection about the x-axis.
- **b)** Consider the basic quadratic function $f(x) = x^2$ and the function $g(x) = (x - h)^2$.

Represent, in the same Cartesian plane, the functions $g_1(x) = (x-4)^2$ and $g_2(x) = (x+2)^2$ and explain how to deduce the graph of g from the graph of f when

2. h < 0: by a horizontal translation to the left.

c) Consider the basic quadratic function $f(x) = x^2$ and the quadratic function $g(x) = x^2 + k$.

Represent, in the same Cartesian plane, the functions $g_1(x) = x^2 + 2$ and $g_2(x) = x^2 - 3$ and explain how to deduce the graph of g from the graph of f when

- 1. k > 0: by a vertical translation upward.
- 2. k < 0: by a vertical translation downward.

ACTIVITY 6 Study of a quadratic function (standard form)

Consider the function f given by the rule $y = -1.5(x - 1)^2 + 6$.

- a) Represent this function in the Cartesian plane.
- **b)** Determine
 - 1. dom f = R 2. ran $f = J \infty$, 6]

 - 3. the zeros of f. -1 and 3 4. the initial value of f. 4.5
 - 5. the sign of $f(x) \ge 0$ over $x \in [-1, 3]$;

$$f(x) \leq 0 \text{ over } x \in]-\infty, -1] \cup [3, +\infty[$$

6. the variation of f. $f > over x \in J^{-\infty}$, 1];

$$f \supseteq over x \in [1, +\infty[$$

7. the extrema of f. max f = 6

ACTIVITY 7 Study of a quadratic function (general form)

Consider the function f given by the rule $y = x^2 - 2x - 3$.

a) Is the parabola representing f open upward or downward? Upward, a > 0.

c) Determine the zeros of the function f.
$$x_1 = -1$$
 and $x_2 = 3$

e) What is the equation of the axis of symmetry?
$$x = 1$$

f) Represent this function in the Cartesian plane.

2. ran f = [-4, $+\infty$ [1. dom $f = \mathbb{R}$

3. the sign of
$$f$$
. $f(x) \ge 0$ over $x \in [-\infty, -1] \cup [3, +\infty[: f(x)] \le 0$ over $x \in [-1, 3]$

4. the variation of
$$f$$
. $f > over x \in]-\infty$, 1]: $f > over x \in [1, +\infty]$

5. the extrema of f. min f = -4

QUADRATIC FUNCTION

Standard form

$$f(x) = a(x - h)^2 + k$$

General form

$$f(x) = ax^2 + bx + c$$

- Vertex: V(h, k)
- Axis of symmetry: x = h
- Zeros: $h \pm \sqrt{-\frac{k}{a}}$

- Vertex: $\left[-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right]$
- Axis of symmetry: $x = -\frac{b}{2a}$ Zeros: $\frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- y-intercept: c

Factored form

$$f(x) = a(x - x_1)(x - x_2)$$

- Zeros: x_1 and x_2
- Axis of symmetry: $x = \frac{x_1 + x_2}{2}$
- Determine the domain and range of the following functions.

a)
$$f(x) = -3(x-2)^2 + 5$$

__dom $f = \mathbb{R}$

$$ran f =]-\infty, 5]$$

b)
$$f(x) = 2x^2 + 4x - 9$$

$$dom f = \mathbb{R}$$

$$ran f = [-11, +\infty[$$

- **5.** Determine the zeros of the function $f(x) = -3(x+1)^2 + 12$. $x_1 = -3$ and $x_2 = 1$
- **6.** Determine the *y*-intercept of $f(x) = -\frac{1}{2}(x+4)^2 + 9$. y=1
- **7.** Determine over what interval the function $f(x) = 2x^2 5x 3$ is positive. $f(x) \ge 0$ over $\left|-\infty, -\frac{1}{2}\right| \cup [3, +\infty[$
- **8.** Determine over what interval the function $f(x) = 3x^2 + 6x 5$ is increasing. ____[-1, +\infty]
- **9.** Determine the extrema of the function $f(x) = -2x^2 + 12x 7$. __max f = 11
- **10.** What is the axis of symmetry of the function $f(x) = -\frac{1}{4}x^2 + 3x + 1$? x = 6
- **11.** Determine the values of x for which the function $f(x) = -3(x+4)^2 + 5$ is equal to -7. x = -6 or x = -2
- **12.** Find the rule of the quadratic function represented by a parabola with a vertex at V(-1,5) and passing through the point P(1, 3).

$$y = -\frac{1}{2}(x+1)^2 + 5$$

- **13.** Consider the functions f(x) = x + 3 and g(x) = -x + 1 represented on the right.
 - a) Represent the function s given that s(x) = f(x) + g(x).
 - **b)** Represent the function p given that $p(x) = f(x) \cdot g(x)$. $p(x) = -x^2 - 2x + 3$

14. A stone is thrown upward from the top of a seaside cliff. The function which gives the stone's height h (in m) above sea level as a function of time t (in sec) since it was thrown has the rule: $h = -t^2 + 12t + 160$.

Find the interval of time over which the height of the stone is at least 180 m above sea level. Between the instants t = 2 and t = 10 seconds after it was thrown.

15. The height h, in metres, of a diver relative to the water level is described by the rule $h = \frac{1}{2}t^2 - 6t + 10$ where t represents the elapsed time, in seconds, since the start of the dive. How long did the diver remain underwater?

16. A projectile is thrown upward from a height of 12 m. After 10 seconds, it reaches its maximum height and after 24 seconds, it hits the ground. Knowing that its trajectory follows the rule of a quadratic function, find the elapsed time between the moment it reaches a height of 6.5 m, on its descent, and the time when it hits the ground.

$$y = -\frac{1}{8}(x + 4)(x - 24).$$

During 8 seconds.

It reaches, on its descent, a height of 6.5 m at the instant t = 22 sec. The elapsed time is therefore 2 sec.

84

3.3 Absolute value function

ACTIVITY 1 Absolute value of a real number

On a winter day, the temperature (in °C), recorded at noon, has an absolute value of 5.

a) What is the recorded temperature that day if the temperature is:

1. above 0 °C? _____**5** °C

2. below 0 °C?

b) We represent the absolute value of a number x by |x|. Determine:

1. |+10| = 10 2. |-10| = 10 3. |0| = 0

c) Is it true to say that two opposite numbers have the same absolute value? ___Yes

ABSOLUTE VALUE OF A REAL NUMBER

The absolute value of a real number a, written |a|, is defined by:

$$|a| = \begin{cases} a & \text{if } a \ge 0 \\ -a & \text{if } a < 0 \end{cases}$$

Ex.: |+4| = 4; |-3| = 3; |0| = 0.

Note that the absolute value of a real number is never negative.

Determine the following absolute values.

a) |+8| = 8 b) |-4.7| = 4.7 c) |0| = 0 d) $|\pi| = \pi$ e) |-6.53| = 6.53 f) $|+\frac{3}{4}| = \frac{\frac{3}{4}}{4}$ g) $|-\frac{2}{3}| = \frac{\frac{2}{3}}{3}$ h) $|-\frac{5}{18}| = \frac{\frac{5}{18}}{18}$

ACTIVITY 2 Properties

Consider a real number a and a non-zero real number b. Answer true or false.

a) $|a| \ge 0$ ______ True

b) |a| = |-a|

- c) |a+b| = |a| + |b| _ False

- c) |a+b|=|a|+|b| False
 e) $|a \cdot b|=|a|\cdot|b|$ True
 f) $\begin{vmatrix} a-b|=|a|-|b| \\ b\end{vmatrix} = \frac{|a|}{|b|}$ True

PROPERTIES

For any real number a and any real number b, we have the following properties

•
$$|a| \ge 0$$

•
$$|a| = |-a|$$

$$\bullet |a+b| \le |a|+|b|$$

$$\bullet ||a-b|| \ge ||a|| - |b||$$

•
$$|ab| = |a| \cdot |b|$$

$$\bullet \quad \left| \frac{a}{b} \right| = \frac{|a|}{|b|}$$

$$(b \neq 0)$$

Ex..
$$|+5| \ge 0$$
; $|-4| \ge 0$

$$|4| = |-4|$$

$$|7 + (-2)| \le |7| + |-2|$$

$$|5 - (-3)| \ge |5| - |-3|$$

$$|8 \times (-3)| = |8| \times |-3|$$

$$\left|\frac{-8}{2}\right| = \left|\frac{-8}{2}\right|$$

2. Complete the following using the appropriate symbol =, >, <.

a)
$$|x+5| > 0$$

b)
$$|x-3| = |3-x|$$

b)
$$|x-3| = |3-x|$$
 c) $|2(x-1)| = 2|x-1|$

d)
$$|7-12| > |7| - |12|$$
 e) $\left| \frac{x+2}{x-1} \right| = \frac{|x+2|}{|x-1|}$

$$\begin{vmatrix} \frac{x+2}{x-1} \end{vmatrix} = \frac{|x+2|}{|x-1|}$$

f)
$$|-6+9| \le |-6|+|9|$$

COUNTY TO THE TOTAL TO THE TOTAL TOT

ACTIVITY 3 Absolute value equations

a) Today's temperature x, in degrees Celsius, recorded at noon has an absolute value of 20. Determine this temperature if

1. it is warm. _

2. it is cold.

- **b)** What are the solutions to the equation |x| = 20? -20 and 20
- c) Consider the equation |x| = 0. What is the unique real number that verifies this equation? \underline{o}
- d) Consider the equation |x| = -4. Is there a real number that verifies this equation? Justify your answer.

No, since the absolute value of a real number is never negative.

ABSOLUTE VALUE EQUATIONS

The number of solutions to the equation:

$$|x| = k$$

depends on the sign of k.

If
$$k > 0$$

The equation has 2 solutions.

$$x = -k$$
 or $x = k$

Ex.:
$$|x| = 3$$

$$S = \{-3, 3\}$$

If
$$\mathbf{k} = 0$$

The equation has 1 solution.

$$x = 0$$

$$\mathbf{E}\mathbf{x} : |\mathbf{x}| = 0$$

$$S = \{0\}$$

If
$$k < 0$$

The equation has no solution.

Ex.:
$$|x| = -5$$

$$S = \emptyset$$

3. Solve the following equations.

a)
$$|x| = 12$$

S = [-12, 12]

b)
$$|x| = -8$$
 S = \emptyset

c)
$$|x+5|=0$$

S = $\{-5\}$

d)
$$|2x + 1| = 7$$

 $S = \{-4, 3\}$

e)
$$\left| \frac{1}{2}x - 5 \right| = 4$$

S = {2, 18}

f)
$$|6 - x| = -3$$
 s = \emptyset

4. Solve the following equations.

a)
$$2|x-5|-4=0$$

S={3, 7}

b)
$$-2|3x-1|+4=-6$$

c)
$$12 - |6 - 2x| = 3$$

 $S = \left\{ -\frac{3}{2}, \frac{15}{2} \right\}$

d)
$$|x-5|+8=2$$
 s = \emptyset

e)
$$-3|2x + 5| + 6 = 6$$

 $\mathbf{S} = \left\{-\frac{5}{2}\right\}$

f)
$$|4x - 5| + 6 = 9$$

S = $\left\{\frac{1}{2}, 2\right\}$

ACTIVITY 4 Absolute value inequalities

a) Consider the inequality $|x| \le 3$.

On the real number line below, represent the set of all real numbers verifying this inequality and find the solution set.

b) Consider the inequality |x| > 4.

On the real number line below, represent the set of all real numbers verifying this inequality and find the solution set.

ABSOLUTE VALUE INEQUALITIES

Given a positive real number k, we have:

Ex.: The inequality $|x| \le 5$ has the solution set: S = [-5, 5].

Ex.: The inequality $|x| \ge 5$ has the solution set: $S =]-\infty, -5] \cup [5, +\infty[$.

5. For each of the following inequalities, determine the solution set and represent it on the real number line.

a) |x| > 10

b) $|x| \le 4$

c) |x| > -3

- -4 4 S = [-4, 4]
- **S** = ℝ

- **d)** $|x| \le -2$
- e
- $|x| \le 0$

 $|x| \ge 0$

$$S = \{0\}$$

ACTIVITY 5 Basic absolute value function

Consider the function f defined by the rule y = |x|.

a) Complete the following table of values.

-3	-2	-1	0	1	2	3
3	2	1	0	1	2	.3

b) Represent the function f in the Cartesian plane.

- c) Determine
 - 1. dom f. _____R
- 2. ran f. ℝ.
- 3. the zero of f. $f(x) \ge 0$ over \mathbb{R}
- 4. the initial value of f.
- 5. the sign of f. $f(x) \ge 0$ over \mathbb{R} .
- 6. the variation of f. $f \nearrow over[0, +\infty[, f > over] -\infty, 0]$
- 7. the extrema of f. min f = 0

The function f defined by the rule:

$$f(x) = |x|$$

is called the basic absolute value function.

• We have:

$$\operatorname{dom} f = \mathbb{R}$$

$$\operatorname{ran} f = \mathbb{R}_+$$

The zero of
$$f$$
 is 0.

The initial value of f is 0.

Sign of $f: f(x) \ge 0$ over \mathbb{R} .

Variation of f: f is increasing over \mathbb{R}_+ ; f is decreasing over \mathbb{R}_- .

The function f has a minimum of 0.

6. Consider the basic absolute value function f(x) = |x| represented on the right.

- a) Using the graph, find the values of x for which the function f(x) is:

 - 2. less than 2. _____ $x \in J-2, 2[$
 - 3. less than or equal to 2. $x \in [-2, 2]$
 - 4. greater than 2. $x \in J^{-\infty}$, $-2[\cup J2, +\infty]$
 - 5. greater than or equal to 2. $x \in]-\infty, -2] \cup [2, +\infty[$
- b) Using the graph, solve the following equations or inequalities:

1.
$$|x| = 1$$
 S = [-1, 1] 2. $|x| = 0$ S = [0] 3. $|x| = -1$ S = \emptyset

2.
$$|x| = 0$$
 S = {0}

3.
$$|x| = -1$$
 S = \emptyset

4.
$$|x| \le 1$$
 $S = [-1, 1]$

4.
$$|x| \le 1$$
 $S = [-1, 1]$ 5. $|x| > 3$ $S = [-\infty, -3[\cup]3, +\infty[$ 6. $|x| > -1$ $S = \mathbb{R}$

6.
$$|x| > -1$$
 _ S = \mathbb{R}

ACTIVITY 6 Absolute value function f(x) = a|b(x-h)| + k

The basic absolute value function f(x) = |x| can be transformed into an absolute value function defined by the rule

$$g(x) = a|b(x-h)| + k$$

a) Consider the basic absolute value function f(x) = |x| and the absolute value function g(x) = a|x|.

Represent, in the same Cartesian plane, the functions $g_1(x) = 2|x|$, $g_2(x) = \frac{1}{2}|x|$ and $g_3(x) = -|x|$ and explain how to deduce the graph of \bar{g} from the graph of f when

- 1. a > 1: _____ by a vertical stretch.
- 2. 0 < a < 1: by a vertical reduction.
- 3. a = -1: by a reflection about the x axis.
- 4. Complete: From the graph of f(x) = |x|, we obtain the graph of g(x) = a|x| by the transformation $(x, y) \rightarrow (x, ay)$
- 5. Is the graph of g(x) = a|x| open upward or downward when

1)
$$a > 0$$
? upward

b) Consider the basic absolute value function f(x) = |x| and the absolute value function g(x) = |bx|.

Represent, in the same Cartesian plane, the functions $g_1(x) = |2x|$, $g_2(x) = \left| \frac{1}{2} x \right|$ and $g_3(x) = |-x|$ and explain how to deduce the graph of \bar{g} from the graph of f when

- 4. Complete: From the graph of f(x) = |x|, we obtain the graph of g(x) = |bx| by the transformation $(x, y) \to \frac{\left[\frac{x}{b}, y\right]}{\left[\frac{x}{b}, y\right]}$
- 5. Compare the graphs of the functions y = 2|x| and y = |2x| obtained in a) and b). Justify your answer. They are the same. In fact, $|2x| = |2| \cdot |x| = 2|x|$.
- 6. Compare the graphs f(x) = |x| and f(x) = |-x|. Justify your answer. They are the same. In fact, |x| = |-x|.
- Consider the basic absolute value function f(x) = |x| and the absolute value function g(x) = |x h|.

Represent, in the same Cartesian plane, the functions $g_1(x) = |x - 3|$ and $g_2(x) = |x + 2|$ and explain how to deduce the graph of g from the graph of f when

00000

Com

Comp.

C-19

<u>۔</u>

- 1. h > 0: by a horizontal translation to the right.
- 2. h < 0: by a horizontal translation to the left.
- 3. Complete: From the graph of f(x) = |x|, we obtain the graph of g(x) = |x h| by the transformation $(x, y) \rightarrow (x + h, y)$
- **d)** Consider the basic absolute value function f(x) = |x| and the absolute value function g(x) = |x| + k.

Represent, in the same Cartesian plane, the functions $g_1(x) = |x| + 2$ and $g_2(x) = |x| - 3$ and explain how to deduce the graph of g from the graph of f when

- 1. k > 0: by a vertical translation upward.
- 2. k < 0: by a vertical translation downward.
- 3. Complete: From the graph of f(x) = |x|, we obtain the graph of g(x) = |x| + k by the transformation $(x, y) \rightarrow (x, y + k)$.

ABSOLUTE VALUE FUNCTION f(x) = a|b(x-h)| + k

The graph of the function f(x) = a|b(x-h)| + k is deduced from the graph of the basic absolute value function y = |x| by the transformation.

$$(x, y) \rightarrow (\frac{x}{b} + h, ay + k)$$

Ex.: The graph of the function $f(x) = -3|\frac{1}{2}(x-1)| + 4$ is deduced from the graph of the basic absolute value function g(x) = |x| by the transformation $(x, y) \rightarrow (2x + 1, -3y + 4)$

7. The following functions have a rule of the form f(x) = a|b(x-h)| + k. $f_1(x) = 3|x|, f_2(x) = |2x|, f_3(x) = |x+4|, f_4(x) = |x|+1 \text{ and } f_5(x) = 2|3(x-1)|-4.$

Complete the table on the right by determining, for each function, the parameters a, b, h and kand by giving the rule of the transformation which enables you to obtain the function from the basic absolute value function g(x) = |x|.

	a	b	h	k	Rule
$f_1(x) = 3 x $	3	1	0	0	$(x, y) \rightarrow (x, 3y)$
$f_2(x) = 2x $					$(x, y) \rightarrow \left(\frac{x}{2}, y\right)$
$f_3(x) = x+4 $				_	$(x, y) \rightarrow (x-4, y)$
$f_4(x) = x + 1$	1	1	0	1	$(x, y) \rightarrow (x, y + 1)$
$f_5(x) = 2 3(x-1) - 4$	2	3	1	-4	$(x, y) \rightarrow \left[\frac{x}{3} + 1, 2y - 4\right]$

8. In each of the following cases, we apply a transformation to the basic absolute value function y = |x|. Find the rule of the function obtained by applying the given transformation.

a)
$$(x, y) \to (x, -y)$$
 $y = -|x|$

b)
$$(x, y) \rightarrow (x - 2, y + 4)$$
 $y = |x + 2| + 4$

c)
$$(x, y) \rightarrow \left(\frac{x}{2}, y\right)$$
 $y = |2x|$

d)
$$(x, y) \to (5x, y)$$
 $y = |\frac{x}{5}|$

e)
$$(x, y) \to (3x, -7y)$$
 $y = -7 \left| \frac{1}{3}x \right|$

a)
$$(x, y) \to (x, -y)$$
 $y = -|x|$ b) $(x, y) \to (x - 2, y + 4)$ $y = |x + 2| + 4$ c) $(x, y) \to \left(\frac{x}{2}, y\right)$ $y = |2x|$ d) $(x, y) \to (5x, y)$ $y = \left|\frac{x}{5}\right|$ e) $(x, y) \to (3x, -7y)$ $y = -7\left|\frac{1}{3}x\right|$ f) $(x, y) \to \left(\frac{x}{3} + 1, 2y - 4\right)$ $y = 2|3(x - 1)| - 4$

• From the basic absolute value function and using the transformation $(x, y) \rightarrow \left(\frac{x}{h} + h, ay + k\right)$, represent the function

$$y = -2\left|\frac{1}{3}(x-1)\right| + 4$$
 in the Cartesian plane.

For example,
$$(1, 1) \rightarrow (4, 2)$$

ACTIVITY 7 Graphing the function f(x) = a|b(x-h)| + k

Consider the function $f(x) = 4 \left| -\frac{1}{2}(x-1) \right| - 4$.

- a) Identify the parameters a, b, h and k. a = 4, $b = -\frac{1}{2}$, h = 1 and k = -4
- b) Is the graph open upward or downward? Justify your answer. Upward, a > 0.

- d) Find the zeros of the function.
- Represent the function f in the Cartesian plane after completing the following table of values.

GRAPH OF AN ABSOLUTE VALUE FUNCTION

Consider the absolute value function defined by the rule:

$$f(x) = a|b(x-h)| + k$$

- The graph is open
 - upward if a > 0.
 - downward if a < 0.
- The graph has the vertex: V(h, k)
- The graph has the following line as an axis of symmetry:

10. Write the rules of the following functions in the form y = a|x - h| + k and identify the parameters a, h and k.

a)
$$y = -2|3x + 3| + 5$$

 $y = -6|x + 1| + 5$; $a = -6$, $h = -1$, $k = 5$

$$y = -6|x+1| + 5; a = -6, h = -1, k = 5$$

c)
$$y = -\frac{1}{2}|8x - 4| + 3$$

 $y = -4|x - \frac{1}{2}| + 3 \cdot a = -4 \cdot b = \frac{1}{2}$

$$y = -4 \left| x - \frac{1}{2} \right| + 3; \ \alpha = -4, \ h = \frac{1}{2}, \ k = 3$$

b)
$$y = 4|6 - 3x| + 5$$

$$y = 12 |x-2| + 5$$
; $\alpha = 12$, $h = 2$, $k = 5$

d)
$$y = -\frac{5}{6} \left| 4 - \frac{1}{5} x \right| + 3$$

$$y = -\frac{1}{6} |x - 20| + 3; a = -\frac{1}{6}, h = 20, k = 3$$

11. Graph the following functions.

a)
$$y = -2|x - 2| + 3$$

b)
$$y = \frac{1}{8}|4 - 4x| - 2$$

b)
$$y = \frac{1}{8}|4 - 4x| - 2$$
 c) $y = -\frac{1}{2}|3x - 6| + 4$

92

ACTIVITY 3 Determining the sign of an absolute value function

Consider the absolute value function f(x) = -2|x + 5| + 8.

- a) What are the zeros of this function? <u>-9 and -1</u>
- b) Determine the sign of this function using a sketch.

 $f(x) \ge 0 \text{ if } x \in [-9, -1] \text{ and } f(x) \le 0 \text{ if } x \in]-\infty, -9] \cup [-1, +\infty[$

ACTIVITY 9 Study of an absolute value function

Consider the functions $f(x) = \frac{1}{2}|8 - 4x| - 3$ and $g(x) = -\frac{1}{3}|2x - 4| + 4$.

a) Write each of the rules in the form y = a|x - h| + k and represent the functions in the Cartesian plane.

$$g(x) = -\frac{2}{3}|x-2|+4$$

b) Do a study of each of the preceding functions and complete the table below.

Properties		B THE STATE OF THE
Domain	R	R
Range	[-3, +∞[]–∞, 4]
Zeros	$\frac{1}{2}$ and $\frac{7}{2}$	-4 and 8
Initial value	. 1	8/3
Sign	$f(x) \ge 0 \text{ over } \left -\infty, \frac{1}{2} \right \cup \left[\frac{7}{2}, +\infty \right]$	$f(x) \ge 0 \text{ over } [-4, 8]$
	$f(x) \leq 0 \text{ over } \left[\frac{1}{2}, \frac{7}{2}\right]$	$f(x) \leq 0 \text{ over }]-\infty, -4] \cup [8, +\infty[$
Variation	$f \lor \text{over }]-\infty, 2]; f \nearrow \text{over } [2, +\infty[$	$f \nearrow over]-\infty, 2]; f \lor over [2, +\infty[$
Extrema	min f = -3	max f = 4

STUDY OF AN ABSOLUTE VALUE FUNCTION

Given the absolute value function: f(x) = a|b(x - h)| + k, we have:

- dom $f = \mathbb{R}$.
- ran $f = [k, +\infty[$ if $a > 0; [-\infty, k[$ if a < 0.
- The zero(s) of f exist if a and k are opposite signs or if k = 0.
- To study the sign of f,
 - we find the zero(s) if they exist;
 - we establish the sign of f from a sketch of the graph.
- Variation

If a > 0, f is decreasing over $]-\infty$, h]. If a < 0, f is increasing over $]-\infty$, h]. f is increasing over $[h, +\infty[$.

• Extrema

If a > 0, f has a minimum. min f = k. If a < 0, f has a minimum. max f = k.

Ex.: Consider the function f(x) = -3|x + 2| + 6. (a = -3, b = 1, h = -2, k = 6)

- Open downward, a < 0
- Vertex: V(-2, 6)
- Axis of symmetry: x = -2.
- Zeros: -3|x+2|+6=0|x+2|=2

$$\Rightarrow x + 2 = -2 \quad \text{or } x + 2 = 2$$

$$x = -4 \quad \text{or} \quad x = 0$$

- Initial value: y = 0.
- dom $f = \mathbb{R}$, ran $f =]-\infty$, 6]
- Sign of $f: f(x) \ge 0$ over [-4, 0]; $f(x) \le 0$ over $]-\infty, -4] \cup [0, +\infty[$.
- Variation of f: f is increasing over $]-\infty, -2]$; f is decreasing over $[-2, +\infty[$.
- $\max f = 6$.

12. Represent the graph and do a study of the function

$$f(x) = -\frac{1}{4}|2(x-1)| + 2.$$

 $dom = \mathbb{R}$; $ran =]-\infty, 2].$

Zeros: -3 and 5.

Initial value: 1.5.

Sign: $f(x) \ge 0$ over [-3, 5].

f(x) < 0 over $]-\infty$, $2[\cup]5$, $+\infty[$.

Variation: $f \nearrow over]-\infty$, 1]; $f \lor over [1, +\infty[$

Extrema: max = 2

13. Determine the domain and range of each of the following functions.

a)
$$y = -2|x + 5| - 1$$

b)
$$y = \frac{1}{4}|-2(x-1)| + 5$$

$$dom = \mathbb{R}, ran =]-\infty, -1]$$

 $dom = \mathbb{R}, \ ran = [5, +\infty[$

14. Determine the zeros of the following functions.

a)
$$y = 3|x - 5| - 6$$
 3 and 7

b)
$$y = -\frac{1}{2}|6 - 3x| + 4$$
 $-\frac{2}{3}$ and $\frac{14}{3}$

c)
$$y = 4|2x + 1| + 8$$
 No zero

d)
$$y = -5|6 - x|$$
 6

15. Consider the linear function f(x) = 2x - 3 and the absolute value function g(x) = 3|3x + 5| - 4. Determine the initial value of the composite

16. Determine the interval over which each of the following functions is positive.

a)
$$y = -\frac{1}{3}|x - 5| + 2$$

b)
$$y = 2|3 - 2x| - 4$$

$$f(x) \ge 0$$
 over [-1, 11]

$$f(x) \ge 0 \text{ over } \left| -\infty, \frac{1}{2} \right| \cup \left| \frac{5}{2}, +\infty \right|$$

c)
$$y = \frac{3}{4}|-2x+4|-3$$

d)
$$y = 3|x - 5| + 6$$

$$f(x) \ge 0$$
 over $]-\infty$, $0] \cup [4, +\infty]$

$$f(x) \ge 0$$
 over \mathbb{R}

17. Determine the interval over which each of the following functions is increasing.

a)
$$y = 5|6 - 4x| + 2$$

b)
$$y = -3|2x + 4| + 5$$

$$f \nearrow over \left[\frac{3}{2}, +\infty\right]$$

$$f \nearrow over]-\infty, -2]$$

18. Determine the solution set to each of the following inequalities.

a)
$$|x-5| > 3$$

b)
$$|6 - x| \le 1$$

c)
$$|3x - 2| \ge 4$$

$$S =]-\infty, 2[\cup]8, +\infty[$$

$$S = [5, 7]$$

$$S = \left] -\infty, -\frac{2}{3} \right] \cup \left[2, +\infty \right[$$

d)
$$|2x + 5| \le 0$$

 $S = \{-5\}$

e)
$$-2|x+1|+5>-5$$

S = 1-6, 4[

f)
$$3|2-x|+4>1$$

 $S = \mathbb{R}$

g)
$$6-3|x-1| \le 0$$

h)
$$-|2x-1|+5>0$$

$$\left|\frac{x}{2}-1\right|>0$$

$$S =]-\infty, -1] \cup [3, +\infty[$$

$$S = J-2, 3[$$

$$S = \mathbb{R} \setminus \{2\}$$

19. Study each of the following functions and complete the following table.

	f(x) = -2 x-1 +4	f(x)=3 x+2 -6	$f(x) = \frac{1}{2} x-4 + 5$	f(x) = -3 5-x
Dom f	R	R	R	R
Ran f	}–∞, 4]	[-6, +∞[[3, +∞[]-∞, 0]
Zero(s) if they exist	-1 and 3	-4 and 0	None	5
Initial value	2	0	5	-15
Sign	$f(x) \ge 0$ over [-1, 3] $f(x) < 0$ over]-\infty, -1[\cup]3, +\infty[$f(x) \ge 0$ over $]-\infty, -4] \cup [0, +\infty[$ f(x) < 0 over $]-4, 0[$	$f(x) \ge 0$ over \mathbb{R} f(x) < 0 never	$f(x) \ge 0$ over $\{5\}$ $f(x) < 0$ over $\mathbb{R} \setminus \{5\}$
Variation	$f \nearrow over]-\infty, 1]$ $f \lor over [1, +\infty[$	$f \nearrow over [-2, +\infty[$ $f \lor over]-\infty, -2]$	$f \nearrow over [4, +\infty[$ $f \trianglerighteq over]-\infty, 4]$	$f \nearrow over] -\infty, 5]$ $f \trianglerighteq over [5, +\infty[$
Extrema	max = 4	min = -6	min = 3	max = 0

ACTIVITY 10 Finding the rule of an absolute value function

The rule of any absolute value function can be written in the form $f(x) = a|x - \hbar| + k$.

- a) Consider the function f(x) = 3|-2(x-5)| + 7. Write the rule of this function in the form f(x) = a|x - h| + k.
- b) Consider the absolute value function with the vertex V(-2, 4) and passing through the point P(1, -2).
 - 1. Identify h and k. h = -2, k = 4
 - 2. Determine a knowing that the coordinates of the point P(1, -2) verify the rule of the function.

- (-) -)	,	
We have:	y = a x + 2 + 4	
	-2 = a 1 + 2 + 4	
	-6 = 3a	
	$\alpha = -2$	

3. What is the rule of the function? f(x) = -2|x+2| + 4

96

FINDING THE RULE OF AN ABSOLUTE VALUE FUNCTION

The rule of any absolute value function can be written in the form:

$$f(x) = a|x - h| + k$$

Ist case: The vertex V and a point P are given.

- 1. Identify the parameters h and k.
- 2. Find a after replacing x and y in the rule by the coordinates of the given point P.
- 3. Deduce the rule.

- 1. h = -1 and k = 2 y = a|x + 1| + 22. -1 = a|2 + 1| + 2
- 2. -1 = a|2 + 1| + 2 -1 = 3a + 2a = -1
- 3. y = -|x+1| + 2

2nd case: Three points, of which two have the same y-coordinate, are given.

- 1. Identify h as half the sum of the x-coordinates of the points with the same y coordinates.
- 2. Find the slope of the ray passing through two given points, and establish parameter a according to the opening of the graph
- 3. Find k after replacing x and y in the rule by the coordinates of one of the given points
- 4. Deduce the rule

Brd case: Any three points are given

- 1. Find the stope of the cay passing through two given points, and establish parameter a according to the opening of the graph.
- 2. Find the egitation of each ray knowing that their slopes are opposite.
- 3. Find the coordinates (h, k) of the vertex V, which is the intersection of the two rays
- 4. Deduce the rule.

- $a = \frac{1}{2} \text{ (open downwark)}$ $v = \frac{1}{2} |x + 4| + k$
- $2 = -\frac{1}{2}|-2 + k| + k$ k = 3
- $4 = -\frac{1}{2}|x+4|+3$

- $2. y_1 = \frac{3}{4}x + \frac{5}{4}$ $y_2 = -\frac{3}{4}x + \frac{11}{4}$
- $3.7\frac{3}{4}x + \frac{5}{4} = -\frac{3}{4}x + \frac{11}{4}$ 6x = 6
- 4. $y = -\frac{3}{4}|x-1| + 2$

- 20. Find the rule of an absolute value function whose graph
 - a) has the vertex V(3, 4) and passes through the point P(7, 6). $y = \frac{1}{2}|x-3| + 4$
 - **b)** passes through the points A(2, -6), B(5, -8) and C(-4, -6). $y = -\frac{2}{3}|x+1| 4$
 - c) passes through the points A(1, -1), B(3, -5) and C(-4, -3). y = -2|x + 1| + 3
- **21.** In order to draw the simulated trajectory of a toy airplane, Ethan uses the rule of an absolute value function that gives the airplane's height y, in metres, as a function of elapsed time x, in seconds. The rule of the function is $y = -\frac{5}{4}|x-8| + 10$.

For how many seconds is the height of the airplane above 7 m? 4.8 seconds

22. In the Cartesian plane on the right, a view of an airplane hangar is represented with the roof of the hangar corresponding to an absolute value function given by the rule $y = -\frac{1}{2}|x-6| + 8$.

- a) What is the height of the wall A0? 5 m
- b) What is the height of the wall CD if the width of the hangar is equal to 16 m? 3 m
- c) The ceiling EF is built at a height of 6.5 m. What is the width of the ceiling? 5.6 m
- 23. The graph on the right represents the evolution of a share's value on the stock market. Eight weeks after its purchase, the share reaches its maximum value of \$9. If it initially was worth \$7, what will it be worth after 13 weeks?

 $y = a |x - 8| + 9; 7 = 8a + 9; a = -\frac{1}{4}$ $y = -\frac{1}{4} |x - 8| + 9.$

It will be worth \$7.75.

24. The graph on the right represents the profit of a recycling company during its first 40 weeks of operation.

$$y = -2 |x - 25| + 30$$

 $-2 |x - 25| + 30 = 15$; $x = 17.5$ or $x = 32.5$.
During 15 weeks.

25. The air conditioning system in an office building has been programmed so that it turns on when the outside temperature reaches 23 °C and turns off when it reaches 20 °C.

The outside temperature varies according to the rule of the absolute value function given by y = -3|x - 6| + 35 where x represents the elapsed number of hours since 6 a.m. and y represents the outside temperature in °C.

How many hours was the system on?

It turns on at 8 a.m. and turns off at 5 p.m. The system is on during 9 hours.

26. The lateral view of a channelling system is represented in the Cartesian plane on the right, scaled in metres.

The walls of this system are represented by an absolute value function with the rule: y = 3|x - 8| + 12.

A filtering net is placed 4 m below the ceiling of the canal. If the width of the canal is 8 m, what is the width of the filtering net?

When
$$x = 12$$
, $y = 24$;
When $y = 20$, $x = \frac{16}{3}$ or $x = \frac{32}{3}$. The width of the net is 5.33 m.

27. The graph on the right represents the front of a house. The base of the roof corresponds to the line y = 5.

The sides of the roof form the graph of an absolute value function passing through the points A(-2, 3), B(2, 13) and C(8, 8). What is the area of the triangle limited by the roof and the line?

What is the area of the triangle limited by the roof and the $y = -\frac{5}{2}|x-4| + 18$; base = $\frac{52}{5}$; height = 13.

The area of the triangle is $67.6 u^2$.

28. A projectile is thrown from a height of 6 m and follows the trajectory of an absolute value function. It reaches a maximum height of 14 m after 4 seconds. Five seconds after reaching its maximum height, it bounces off a cement block and follows the trajectory of a quadratic function. If the maximum height of the second bounce is 8 m and occurs three seconds after bouncing off the cement block, when will the projectile hit the ground? (Round your answer to the nearest second).

$$y = -2|x-4| + 14$$
, $P(9, 4)$; $y = -\frac{4}{9}(x-12)^2 + 8$;

The projectile hits the ground at t = 16 s.

