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CHALLENGE 3 @ -— —

1. Determine the domain and range of the following functions. =
a) ) =-2x~3[+1 b) f)=-ymrl+1 ¢ fly=57-]

dom f =R dom f = J-=, 1] dom f =R\ {1}
ren f = }F=, 1] ran f = }-=, 1] ran f = R\{-1}
2. Consider the functions f(x) = 2x — 1 and g{x} = 3x? — 2x + 1. Find the rule of »
a) gof : b) fog
gef(x)=3(2x -1 -2(2x - 1) + 1 foglx) =2(83x*-2x + 1) -1
=12x2 - 16x + 6 =6xZ-dx + 1

2. Determine the zeros of the following functions.

2) fw)=-2x—1+6 b) f)=-24c-3+6 o f) =70y +]
12 1

-2 and 4 2z

4. What are the equations of the asymptotes of the function f(x) = g(szD - 42

The lines defined by the equations x = 1 and y = -4.

B. Study the sign of the following functions.
a) f(x)= 4[..%(,; i 1)‘ _ 4 f)<Oifxe[-1 3] ) = 0if x € -, ~1]U [3, 4=

b) f(x) =-2Jx+3 +4 fix)< Qifxc[1, +[; fix) = 0if xc [-3, 1]
Q) fir) =15 +2 fixy < 0 if x & [1, 8[; fix) = 0 if x € J-=, 1JU I3, e[
—

6. Describe the variation of the following functions.
a) fix)=-2pc— 2| +4__f7overk= 2 ) over [2, +={

b) fix) = -1y +1 £ 2over k= 1

d flx)= ﬁ +1 f > overR\ (1]

7. Find the rule of l

a) an absolute value function whose graph has a vertex at V(-2 6) and passes
through the point A(1,-3). _y=-3|x+2| +6

b) arational function passing through the point A(3,4) with asymptotes defined by “
the linesx =1 and y = 2.

4
V=x-1 +2

¢} asquare root function whose graph has a vertex at V(—4,-2) and passes through |
the point A(5, 4). _y= 2/x+4-2 _ '
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3 ] 1 Function

AeFIVITY 9 Recognizing a function

a)

b)

Consider the mapping diagram of the relation R represented on the right.

1. What is the source set? A=1{2,3 4,5}

2. What is the target sét? B={4,5,6,7 8] \

3. Complete: An element x from set A is in relation with an elementy
from set B if x is a divisor of y.

4. s there an element from the source set that is in relation with more than one element from
the target set? Yes

5. s this relation a function? Justify your answer.
No, 2 is in relation with three elements and 4 with two elements.

Consider the Cartesian graph of the relation S represented on the ¥4
right. The point (1, 3) means that the element 1 from the source set is S
in relation with the element 3 from the target set.

1. What is the image of 4? 1 1 L
2. What is the antecedent of 2? 0 Pyl

3. Is there an element from the source set that is in relation withmore 9]
than one element from the target set? No

4. Ts this relation a function? Justify your answer.
Yes, since each element from the source set is in relation to at most one element from the

4

rY

target sei.

any vertical hne intersects the graph of this relation in at most ene
- point. '

DEFINITION OF R FUNCTION

A relation given by a source set A to a target set B is a function if each element from A is
associated with at most one element from B.

Mapping diagram _
Given the mapping diagram of a relation, this relation is a function R
if, from each element of the source set, at most one arrow is drawn.

Cartesian graph 7
Given the Cartésian graph of a relation, this relation is a functionif | ¥ X

Ris nota function.
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e Set of ordered pairs

Given a relation’s set of ordered pairs, this relation is a function if the [ 6,= {(=.0). (b,1), (2,2)}

first coordinate of each pair verifying the relation ears only once. . -
° p & app y ’ Ris not a function.

1. In each of the following cases, indicate if the relation is a function.

a) A ; ) v ) G={(0,0),(1,-1), (1, 1)}
‘ 1-¢ i ®
- o[ 1 %
Yes No No
d) YA e) ¥ f) A B

Yes Yes No

g) G={(4,3),(53),(6 3)}h) ML )i - 74
14\ ‘ I l

Yes Yes Yes
k) ¥ A ) ¥4

\
=)
uyY

J)
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ACTIVITY 2 Pronerties of functions

Consider the function frepresented on the right.

a) What is the domain of f? £3, 5]

b) What is the range of f? [3, 3]

€) What are the zeros of f? -2, 0,2 end ¢
d) What is the initial value of f? 0

e) Over what interval is the function f

1. positive? 2, 01UI2, 4] 7 pegative? [3,-21U [0, 2]u [4, 5]

f) Over what interval is the function f

1. increasing? F3,-1ui1, 3] 2. decreasing? F1, 11U (3, 5]
g) What is, for function f, its
1. absolute maximum? 3 2. absolute minimum? -3
PROPERTIES OF FUNCTIONS
Consider the function f represented on the right. v
* The domain of a function fis the subset of the elements of the
_source set which have an image in f. \ f
dom f= [-2, 4]

¢ The zeros of the function f are the values of x for which the

11 :

* The range of a function f is the subset of the elements of the

target set which are images by f. . Y / L *

ran f = [-3, 4]

function is equal to zero. The zeros of f are: —1, 1 and 3.

® The initial value of the function fis the value of y when x = 0. The initial value of fis-3.
* Studying the sign of a function consists of finding the values of x for which the function is

positive or those for which the function is negative,

0 =0ifxel-2-1U[L,3]
fx)<=0ifxe[-1,1]U[3,4].

* Studying the variation of a function consists of finding the values of x for which the function

~ is increasing or those for which the function is decreasing.
fis mcreasing if x € [0, 2). : |
fis decreasing if x € [-2, 0] U [2, 4].

* The absolute maximum (or minimum) of a function is the highest image (or the lowest image)

_ when it exists. _
max f=4, min f=-3
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2. Consider the function f represented on the right. Determine

a) 1. domf=_E2%% 2. ranf=_ -3, 3]
b) 1. thezerosof f: -1 and 3
2. the initial value: -2

¢} the values of x for which the function fis
1. positive: 3.~ U8, 4] 2, pegative: 1. 3]

d) the values of x for which the function fis

1. increasing: 1, 4] 2. decreasing: -3, 1]
e) 1. the maximum of f:__3 2. the minimum of ;-3
|
3. Draw the graph of a function satisfying the following conditions. y Jr ]
1, dom f=[-1,4]. - “
ran f = [-2, 3].
The zeros of fare: 1 and 3. | 1+

nY

The function is negative when x € [-1, 1] U [3, 4].

The function is increasing when x € [-1, 2] and decreasing when - |
x€[2,4]. A
7. max f=3 and min f=-2. '

The initial value is 1. ; | ;
e initial value is .j A \ i

SV HWN

4. Study the following functions by completing the table below. 3
a) | b) 9 d) i

0 ; x
’L
domain R 2, +ef [-2, +of £2, 31 I
range [-2, +oof k=, 2] F=, 2} F2 2] i
zZeros 0 and 2 -1, 1and 3 2 ~1and 1 4
initial value 0 -1 1 2
flx) =0ifxe | J= 002 +of | [2, -1]Ju[1, 3] -2, 2] -1, 1]
flxy=0ifx e [0, 2] [1, 1]U [3, +oof [2, +f -2, -1Ju 1, 3]
frifxe [1, +oof fo, 27 never -2, 0]
fyifxe e, 1] [-2, 0] U [2, +=[ [-2, +eof [0, 3]
extrema min f = -2 max f=2 max f =2 max f = 2,
min f = -2

© Guérin, éditeur ltée Z.1 Function 67




E_ Determine the domain and range of the following functions.

a) I\ b) Ay c)
~—
/9.1 - T s
! $ o =
AL —3 *
—20

dom = J=, =1[ U [0, 2[ U ]2, +=f dom =R dom =R
ran =}, 2[ ran =7 ran = J~», 3]

MASTIVITY 3 Inverse of a function

Let s represent the side of a square and A represent its area.

a) 1. What is the rule of the function f that associates, to the square’s
side s, its area? __ A =s%

2. Complete the table of values below and represent the function f
in the Cartesian plane ®.

Side s 0 0.5 1 1.5 2

Area A o |ozs) 1 |225] 14

b) 1. What is the rule of the inverse £ that associates, to the square’s
area A, its side length §?
s=+4A

2. Complete the table of values below and represent the function
f-1in the Cartesian plane @.

Area A 0 025] 1 2.25
Side s 0 0.5 1 1.5

3. Explain why the inverse f~! is a function.

Any vertical line only intersecis the curve at a maximum of one

point.

¢) 1. Reproduce the two graphs in the same Cartesian plane ® where
the axes are not labeled.

Side sﬁn @

2. Verify that the graphs of fand f-! are symmetrical abouit the bisector of the 1st quadrant.

68 Chapter 3 Real functions
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MNETIVITY 4 Functions whiose fiverse is ot a Finction
a) Consider the sets A and B on the right, and the function fof A toward a f

B with the rule fix) = 2.

1. Use a mapping diagram to represent function f.
2. Deduce the mapping diagram of the inverse 1.

3. Explain why f~! is not a function.

4 is in relation with two elements -2 and 2 by L. Therefore, f! is

not a function.

b) Consider the table of values on the right of a
function f.
1. Deduce a table of values for f-1.
2. Explain why f-! is not a function.

1 is in relation with two elements -1 and 1.

X -2 1 -1 0 2
Ay | 2 1 0 1 2
X 2 1 1 2
f—'(x_wl -2 -1 1 2

¢) The function fon the right has the rule f{x) = x%.

1. Deduce, by symmetry about the bisector of the 1st quadrant,

the graph of the inverse f-1.
2. Explain why the inverse f-! is not a function.

There is a vertical line that intersects the graph of ¥ at 2 pbints.

3. True or false?

The inverse of fis not a function when a horizontal line can be
drawn to intersect the graph of f at more than one point. _True

© Guérin, éditeur ltée
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INVERSE OF A FUNCTION
* If f1s the function of a source set A toward a target set B, the [ESNAGT
inverse of f, written f~1, has the source set B and the target set A.
* The inverse of a function is not necessarily a function. x = y
il
f—1
Ex.. f: A—>B Ex: f, A—B
x—>y=2x x =y =x’
——'—f—'—L.
. ; 2] ¢
3. 2 > 4
f—‘l f—‘l
£71is a functjon. f~!is not a function.
domf = ranf‘l ={0,1, 2} domf = ranf! = {-1, 0, 1,2}
ranf = domf! = {0, 2, 4} ranf = domf-! = {0, 1, 4}

* For any function f, we have:| domf=ranf-! [ and | ranf= domf-!

 The Cartesian graphs of a function and its inverse are symmetrical about the line with the
equation y = x. '

f71is a function. - flisnot a function.

 The inverse of a function fis not a function when a horizontal line can be drawn to intersect

the graph of f at more than one point. - -
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6. Consider the mapping diagram of a function f.
a) Deduce the mapping diagram of f-.
b) Explain why f-! is a function. _—_— »

There is at most one arrow from each element of the source set B. 1

¢) Determine
1. dOlTlf i-2,-1,0, 1, 2}
3- domf_]. {-8?-1p 09 19 8’

d) Verify that
1. domf=ranfL

{-8:-11 0: I:r 8’ -

2. ranf
{-2,-1,0, 1, 2} bl

4, ran .

2. ranf= domf-l.
7. Indicate which of the following functions have an inverse that is also a function.
a) a M B b) ¥
=2 g |

-3
<5

£

Y

No Yes

C) h= {(_2; _4)1 (—1:"'2): (O, O)r (1, 2): (21 4)} d)

Yes ""x No

8. For each of the following functions,
1. deduce the graph of the inverse.
2. indicate if the inverse is a function.

b) vh <) v

=
)Y

d) ¥ f) v

=
"

No

2.1 Function
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ACTIVITY S Rule of the inverse

A salesman in a store receives a weekly base salary of $250 and a sales commission of $10 per item

sold for the week.
a) Let a represent the number of items sold for the week, and srepresent the total weekly salary.
Determine the rule of

1. the function f which gives the total salary s as a function of the number of items
solda. __s=250 + 10a

o 5-250
2. the function f-! which associates, to a given salary s, the number of items sold a. R T

b) Complete the table of values on the right -
for the functions fand f-1. fg a |0 5]10]15]20 <) 1
s | 250 300 350 | 400} 450]| -
RULE OF THE INVERSE
Given the function f with the rule:y = 2x 4 6. To determine the rule of the inverse f )
1. we isolate x in the rule of f. 2. we switch the letters x and .
y=2x+6 - 1,3
2x =y~ 6 2 3
5y %y ~3 f} therefore has the rule:y = -x — 3.
——
We interchange the letters x and y to respect the convention of
function notation which assigns x as elements of the source set
and y as elements of the target set.

9. For each of the following rules of functions, find the rule of its inverse.

a) y=5x b) y=3x—6 Q y=-2x+10
y=§ y=%+2 y=%+5

d) y=0.1x+ 100 e y=%x-6 f) y=—3x+12
y = 10x - 1000 y=2x+9 v=2x+16

10. A capital of $1000 is invested on January 1%, 2009 at an annual interest rate of 10%. Find the
rule which associates

a) a given number of elapsed years tsince the beginning, to the accumulated capital C.
C=1000 + 100t

b) a given accumulated capital C, to the number of elapsed years t. __t = 0.01C-10

11. A car's gas tank initially contains 60 litres of gas. This car consumes on average 12 litres/100 km.
Find the rule of the function which associates,

a) a given distance traveled d (in km) to the quantity g of gas remaining in the tank.
qg=-0.12d + 60

b) a given quantity g of gas remaining in the tank, to the distance traveled 4 (in km).
d= u%iq + 500
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AeFIviTY © composition of functions
Consider the function f defined by fix) = x + 5 and the function g defined by the rule g(x) =

a) Determine
1. f(1) _6 2. gifin)) 12

b) The composition of f by g, written gof is defined by gof(x) = g(f(x)).
1. Calculate gof(1) 12
2. Determine the rule of gof.

gofix) = a(f(x)) = glx + 5) = 2x + 10

¢) Determine

. gl) 2 2. flel)) 7
d) The composition of g by f, written fog, is defined by fog(x) = flg(x))- E/' A \{\

1. Calculate fog(1)7 '
2. Determine the rule of fog, _f°g(x) = flgtx)) = fiZx) = 2x + 5 ‘ 7 0

e) Compare the rules of gof and fog.
gof(x) * foglx) S

COMPOSITION OF FUNCTIONS
* Given two functions fand g,
- the composition of f by g, written gof, is deﬁned by the rule:
| gof(x) = glfx)
— the compoesition of g by f, written fog, is defined by the rule:
fogl) =fle®) |
Ex.: Given f(x) = x + 3 and g(x) = x?, we have:

gof(1) = glf(1)) = g(4) = 16, foe(1) =flegM) =F1) =4
goflx) = (x+3) (x +3)% fog(x) = f(x?) =x2 + 3

 Note that, in general, gof(x) # fog(x).

1 2. Consider the functions f{x) = 3x — 5 and g(x) = —2x + 8. Determine
-5

a) gofiz)=__6 b) fog-1)=_22 <) fog(4) =

d) gof(0)=___18 e) gog(7)= _ 20 f) fog(-5)= _49

2.1 Function
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13. Consider the functions f{x) = —2x + 5 and g(x) = 4x — 3.
Determine the rules of the following functions.
a) fog(x) —  flalx) = f(dx-3)=-2(dx-3) + 5=-8x + 11

b) g°f(x) = g(f{x)) = g{-2x + 5) = 4(-2x + 5} -3 =-8x + 17

c) fof(x) = flf(x))=f(-2x + 5) = -2(-2x +5) + 5= 4x - 5

d) gog(x)= _8(a(x)) = g(4x-3) = 4(dx-3)-3 = 16x- 15

14. Consider the functions f(x) = 2x + 3 and g(x) = 3x — 2.

a) Determine the rule of
1. g°f- g°fix) = 6x + 7 2. fog. feg(x) =6x -1

b) Verify that gof(x) # fog(x).

5. Consider f(x) = x + 5 and g(x) = x — 2. Verify that, gof{x) = fog(x).
g fix)=x+3, feg(x)=x+3

16. Consider the function f{x) = 2x + 8.

) = Ly -
a) Determine the rule of the inverse -1, fi)=5x-4

b) 1. Determine the rule of the composite f-1of.
Flof() = fUfGeh) = fU2x + 8) = E(2x + 8) -4 = x

2. Detérmine the rule of the composite fof-1,
Fof(x) = fif-x)) = _f[%x- 4] = 2[%:: - 4] +8=x

3. Verify that f-Tof(x) = fof-1(x) = x.
¢) Repeat this exercise with the function f(x) = —5x + 10.
FUx) = =5x + 25 fof(x) = x5 fof 1) = x

17. Consider the functions f(x) = x + 5 and f(x) = 3x + 4.

a) Determine the rule of the functions f~! and g-7.

i) =x-5 glx)=1x-2

b) Determine

1. fof—l(x) = FFx) =_f(x;5) =4x- 5 .; 5 =:.
algi(x)) = 9[§x-§J.3[§x_§] dox

2. gogHx) =
3. fog(x) = flatx)) =f(3x +4)=3x+4+5=3x+9
4, gof(x) = gif(x))=glx +5)=3(x +5) + 4 =3x + 19
¢) Determine
1x-3 119
I (feg) () = 2 2. (gfy' @)= 373
3. glof () = 3*7% 4. flogl(x)= 3% "%

d) What can you deduce? _ (f~g)'(x) = g'f*(x) and (g-f)*(x} = > g~!(x)

74 Chapter 3 Real functions
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18. Consider the functions f(x) = 2 + 4x — 5 and gx) = 2x — 1.

a) Determine the rule of the composite fog.
Jeglx) =flglx)) = f(2x - 1) = (2x- 1P + 4(2x - 1} - 5=dx2 + 4x - 8

b} Determine fog(2) in two different ways:
1. by finding f(g(2)) = f(3) = 16
2. by using the rule found in a). H2F +4(2)-8=16 '|

19. In Quebec, every purchase is taxable. The goods and services tax (GST) is 5 %.
The Quebec sales tax (QST) is 7.5 %.
Letfbe the function which associates a given purchase amount x to the amount y including GST,
Let gbe the function which associates a given purchase amount x to the amount y including QST.
a) Determine the rule of the function
1. fi _y=1.05x 2. g _y=1075x
b) 1. Determine the rule of the function gof. __ g°fix) = 1.12875x
2. Determine the rule of the function fog,  fogfx) = 1.12875x
¢} Compare the rules of the functions gof and fog. What can you conclude?
The rules are equal. To calculate the final price of a product, it doesn’t matter if you apply
the GST first and then the QST, or the QST first and then the GST. |

d) 1. What is the final price of a product with a $39.80 price tag? $44.92
2. What is the initial price tag of a product if the final cost paid is $56.44? $50

20. The weekly salary of a sporting goods store salesman includes a base salary of $300 per week
and a $40 bonus for every item sold.

* During the holidays, the owner of the store decides to give each employee a 4% bonus on their
weekly salary.
Let f be the function which gives the regular weekly salary y as a function of the number of
iterns sold x.

Let g be the function which gives the bonus holiday weekly salary v as a function of the regular

weekly salary x.
a) Determine the rule of the function
1. fi _y=40x+300 2. g y = 1.04x 3. gof:' v=416x+312

b} What will an employee’s salary be, during the holidays, if he sells 4 items during the
week? $478.40

¢) How many items did an employee sell if he receives a weekly salary of $561.60 during the
holidays? 6 items
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A\@TIVITY 7/ Operations hetween functions
Consider the functions f(x) = x? — 9 and g(x) = x + 3. Determine

a) flix) +gx)= £+x-6 b) flx) —glx) = L-x-12

) fx)} x g(x) = &5 +3x%-9x-27 d) %: x-3
OPERATIONS BETWEEN FUNCTIONS

Given two real functions f and g, we have:

(f+ 8)(x) = fix) + &) (f — g)(x) = fix) — glx)

(F+ £)0) = fx) x glx) Lw=12

Ex.. Given f{x) = x2 + 2x — 15 and g(x) = 2x — 6, we have:
(f+ (%) = flx) + gx) = (@ + 2x — 15) + (2x — 6) = x* + 4x — 21.
(f — &)%) = flx) — g(x) = (¥ + 2x — 15} — (2x = 6) =% — 9.
(f - £)(x) = f(x) x gx) = (a2 + 2x — 15)(2x — 6) = 22® — 2x* — 42x + 90.

i(x) _fx)  x2a2-15 (x—3)(x+5) x+5
g T g T 2m-6 | Ax-3) — 2 °

2 1. Consider the four functions f, g, k, and i. Let f{x) = x* + x — 6, g(x) = 2x — 4, h(x)=x> —9and

i(x) = 3x% — 12.

a) f+eg+h)(x)= 2x2+3x-19 b) f-g+h)(x)= 2x*-x-11
 (f-ox) = 2x3 ~ 2x% - 16x + 24 d} (g-h)x)= 2x3 - 4x% - 18x + 36

&) (f—h—i)p) = 3xZ+x+15 f [ﬁ](x)= 1;_3(:”&—3)

g [ %](x): W(x-=2) h) [%h](x)___ 2(x-3) (x+-3and x + 2)

29 . The condominium association of a building establishes the following fees to be charged to each
of its condo owners.

— Monthly condo fees: $225
_ Monthly fees for renovations: $80
_ Municipal taxes paid at the beginning of the year: $1500

a) Determine the rule of the function fwhich gives the cost y of condo fees as a function of
the number x of months. _v = 225x

b) Determine the rule of the function g which gives the total cost y of renovation fees and
municipal taxes as a function of the number x of months._y = 80x + 1500

¢) Determine the rule of the function f + g and interpret this rule. y = 305x + 1500
f + g gives the total fees charged to a condo owner as a function of the number x of

_munths.

d) What is the total amount of fees paid by a condo owner after 8 months of occupancy?
$3940
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3 12 Polynomial functions B “

MAetiviry 4 polynomial functions
|
a} Among the following functions, indicate which ones are polynomial functions. .@
If it is a polynomial function, indicate its degree. i
P(x) = ~5x + 8 _ Yes, 1st degree 2. P{x) =422 — 5x Yes, 2nd degree i‘
3. Plx)= E +3 No 4. Plx)=-3 . Yes, degree 0 :
5. P(x) = ,/‘-7 No 6. P(x) =3 + 422 — 5x+ 3 _Yes, 3rd degree |
b} Represent the following polynomial functions in the Cartesian s |
plane on the right. \ / / 1
1. fix)=2 2. g)=3x—2 3. h(x) =22 + 2x —1 \ - i |
14
0 : 0
~ POLYNOMIAL FUNCTIONS }
¢ A polynomial function is any function with a polynomial for a rule. : “
Ex.: fix) = 2 is a zero degree polynomial function. y e "]||
g(x) = 2x + 3 is a 1** degree polynomial function. / f
h{x) = 22 — 4x + 3 is a 2" degree polynomial function. / -\ / ;‘
A i g
AL I
£ : |
¢ The following table classifies polynomial functions according to their degree. i‘ |
Degree Basic polynomial Transformed polynomlal \ Name [
- function function : |‘
0 | fix)=1 f(x) = b where b € R constant function |
f(x) = ax where a € R* direct variation linear
function
i fl) =x f{x) = ax + b where a, partial variation linear
be R function
2 f(x) =2 fx)=ax®+bx+c quadratic function
where a € R*
3 fx) = %3 fix})=ax®+ bx? + cx+d | cubic function
where a € R*
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ACTIVITY 2 study of 2 constant function

Consider the function f given by the rule y = 3. 7
a) Represent this function in the Cartesian plane. j
b) Determine ’
1. domf= _R 2. ranf=_ 13} 14+
3. the zeros of fif they exist. No zeros 5 1{ ™=
4. the y-intercept. 3
5. the sign of f fix) = 0 over R

6. the variation of f _fis a constant function 7. the extrema of f _maxf=minf=3

€) What is the rate of change between two random points on the graph of f? _It is zero.

CONSTANT FUNCTIONS

* A constant function is a zero degree polynomial function. It is described by a rule of the form:
fly=bl,beR

* The Cartesian graph of a constant function 1s a horizontal line with the equation y = b.
Study of a constant function
- domf=R
~ ranf={b} -
~ The constant function has no zero unless b = 0. '
~ fix)>0overRifb>0 5 >

fix) <OoverRifb <0 ' x

- maxf=minf=5~

* The rate of change of any constant function is zero,

® A zero function is a constant function described by the rule f{x) = 0. Its Cartesian graph is
represented by the x-axis '

1. A ski resort is open 120 days during the ski season. The cost of a y,r
season pass is $450. Consider the function fwhich gives the total cost :
y as a function of the number x of days of skiing. -3

a) How much does it cost to ski for 12 days? $450
b} What is the rule of function f? y = 450 100+
) Represent function fin the Cartesian plane, 5 2=n »
d} Determine
1. domf= _[0, 120] 2. ranf= __ {450}
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ACTIVITY B Sstudy of a linear function
Consider the functions f(x) = 3x — 2 and g(x) = —%x + 2.

a) Represent the functions f and g in the Cartesian plane on the right.
b} Study the functions f and g and complete the following table.

Ya

Function f Runction ¢
Domain R R 0
Range R R
Zeiom -ﬁ— 4 /
Initial value -2 2
. . 2
Sign f(x)aﬂlfxelg,""”[ fix)=0if x € ==, 4]
fo<oifxe =2 o< oifcc, v
Variation f is increasing g is decreasing
over R over R

ACSTIVITY 4} Transformations of the basic linear function

The basic 1st degree linear function f{x) = x is represented on the right.

a) 1.

b) 1.

© Guérin, éditeur ltée

Draw the image of function f by the vertical scale change
(x, %) — (x, 3y) to obtain the graph of function g.

2. What is the rule of the function g? _gfx) = 3x

Draw the image of function g by the vertical translation
(%, ¥) = (x, ¥ — 2) to obtain the graph of function k.

2. What is the rule of the function A? _hfx) = 3x- 2

3.2 Polynomial functions




LINEAR FUNCTION
* A linear function is a 1** degree pelynomial function. It is described by a.rule of the form:
fix)=ax+b |acR*

A linear function represents a situation where the rate of change is constant. a represents the
rate of change and b represents the initial value (y-intercept).

Ex.: fix) n%x -1 Ex. gx)=-2x+3

Doméin ' iR
Range R
. Zero 2 1.5
Initial value -1 3
Sign fix)<0ifx<2 fx)=0ifx=<1.5
flx)=0ifx =2 fix)<s0ifx=15
Rate of change % -2
Variation increasing function decreasing function

* — The function is increasing when the rate of change is positive.
— The function is decreasing when the rate of change is negative.

-
2. A video game software company establishes that its monthly :

revenue corresponds to 30% of the amount of sales. The
company’s fixed monthly operating costs are $12 000 and the
company cannot sell for more than $80 000 in one month.

a) What is the rule which gives the net revenue y as a function
of the amount x of sales? y=0.3x-12 000

b} Represent the function in the Cartesian plane.

¢) Determine for this function )
1. the domain. {0, 80 000} 2. the range. [-12 000, 12 000]

d)} Determine and interpret
1. the zero of the function. $40 000. Amount of sales to have a zero net revenue.

2. the initial value of the function. _$ =12 000. For zero sales, the loss is $12 000.
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'e) Study the sign of this function. fix) =< 0 over [0, 40 000]; f(x) = 0 over [40 000, 80 000].

f) Study the variation of this function. _f * over [0, 80 000].

Z. The graph of a linear function passes through the points A(3, 3) and B(5, -3). Determine the
interval over which this function is positive. F=, 4]

ACTIVITY 5 Transformation of the basic fuadratic function
The basic quadratic function f{x) = x? can be transformed into a
quadratic function with a rule of the form g(x) = a(x — h)? + k.

a) Consider the basic quadratic function f{x) = x? and the quadratic
function g(x) = ax.
Represent, in the same Cartesian plane, the functions g (x) = 2«2,
&%) = ";*xz and g;(x) = -2 and explain how to deduce the graph
of g from the graph of f when

1. a>1: by a vertical stretch.

' )

2. 0<a<1: byavertical reduction.

3. a=-1: by g reflection about the x-axis.

b) Consider the basic quadratic function f(x) = x? and the
function g{x) = (x — k)2,
Represent, in the same Cartesian plane, the functions
g(x) = (x — 4)? and g,(x) = (x + 2)? and explain how to
deduce the graph of g from the graph of fwhen
1. h > 0Q: by a horizontal translation io the right.

2. h < (: by a horizontal translation to the left.

¢) Consider the basic quadratic function flx) = x? and the
quadratic function g(x) = x? + k.
Represent, in the same Cartesian plane, the functions /
g (x) = x* + 2 and g,(x) = x* — 3 and explain how to deduce -
the graph of g from %he graph of f when ; \ \qi4 /gz i
1. k> 0: by a vertical translation upward. r l

2. k < 0: by avertical translation downward.
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ACTIVITY © Study of 2 quadratic function (standard form)

Consider the function f given by the ruley = -1.5(x — 1)2 + 6.
a) Represent this function in the Cartesian plane.

b) Determine

1. domf= R 2. ranf=__ Fx, 6]
3. thezerosof f_~1and3 4, the initial value of f __4.5 |
5. the sign of f _ ftx) = 0 overx ¢ [-1, 3];

f(x) = 0 over x ¢ o, ~-1] U {3, +oof
6. the variation of f __f 7 over x € J-=, 1];

Iy over xc [1, 4oof

7. theextremaof f _ maxf=6

A\CTIVITY 7/ Study of a quadratic function (general form)
Consider the function f given by the rule y = x2 — 2x — 3.

a) Is the parabola representing f open upward or downward?
Upward, a > 0.

b) What are the coordinates of the vertex? i1, -4)
€) Determine the zeros of the function f. Xxy=-landx, =3
d) What is the initial value of f7 __ -3
€} What is the equation of the axis of symmetry? __ x=1
f) Represent this function in the Cartesian plane.
g) Determine:
1. domf=_R 2. ranf= _ [-4, +of
3. the sign of f. fix) = O over x € }-=, =11 U {3, +of; f{x) < 0 over x c [-1, 3]

4. the variation of £ ___f over x € J-», 11; f » over x € [1, +of
5. the extrema of f. min f = -4
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QUADRATIC FUNCTION

/
a>0 a<(

General lé'orm

fx) = ax? + bx + ¢

Standard form
fx)=a(x-h?2+k

. . " B dac-B2
Vertex. V(k, k) Vertex: [ % » ]
* Axis of symmetry: x = h * Axis of symmetry: x = -%

o2
¢ Zeros: h + —f ¢ Zeros: i%ﬂ
® y-intercept: ¢

Factored form

fx) = a(x — 2,)(x — x;)

* Zeros: x; and x,
xn+x

* Axis of symmetry; x = :

@. Determine the domain and range of the following functions.

a) fo)=-3(x -2 +5
dom f =R

b) flx)=2x2+4x -9
dom f =R

ran f = }-x, 5]

ran f=[-11, +oof

5. Determine the zeros of the function fry=-3(x+1)2+12._ x1=-3andx, =1

6. Determine the y-intercept of f(x) = —%(x

+4)24+9. _ y=1

7. Determine over what interval the function f{x) = 242 — 5x — 3 is positive.

f(x) = 0 over J'°°- -—;—] U [8, +oof

8. Determine over what interval the function flx) = 3x2 + 6x — 5 is increasing. _ -1, +[

9. Determine the extrema of the function fix)=-2x2 4+ 124 ~ 7.

maox f=11

10. What is the axis of symmetry of the function f{x) = —%xz +3x+17_x=6

1 1. Determine the values of x for which the function flx} = -3(x + 4)2 4 5 is equal to —7.

x==6orx=-2

12. Find the rule of the quadratic function rep
passing through the point P(1, 3).

y=-%(x+1)2+5

resented by a parabola with a vertex at V(~1, 5) and

© Guérin, éditeur ltée
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13. Consider the functions f{x) = x + 3 and g(x) = - + 1 represented N\
on the right. !

a) Represent the function s given that s(x) = f(x) + g(x).
s(x) =4

b) Represent the function p given that p(x) = f(x) * g(x).

plx)==x2-2x+3 4

14. A stone is thrown upward from the top of a seaside cliff. The function which gives the stone’s
height h (in m) above sea level as a function of time 1 (in sec) since it was thrown has the rule:
h=-t*4 12t + 160.

Find the interval of time over which the height of the stone is at least 180 m above sea level.
Between the instanis t = 2 and t = 10 seconds after it was thrown.

15. The height h, in metres, of a diver relative to the water level is described by the rule
= %tz — 6t + 10 where ¢ represents the elapsed time, in seconds, since the start of the dive,

How long did the diver remain underwater?
During 8 seconds.

16. A projectile is thrown upward from a height of Height
12 m. After 10 seconds, it reaches its maximum  (m) |
height and after 24 seconds, it hits the ground.

Knowing that its trajectory follows the rule of a 124
quadratic function, find the elapsed time
between the moment it reaches a height of
6.5 m, on its descent, and the time when it hits
the ground.

_1 e 0 7 2 Tim;e
v= 8(x + 4){x - 24). (s}

It reaches, on its descent, a height of 6.5 m at the instant t = 22 sec. The elapsed time is

therefore 2 sec,
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3 | 3 Absolute value function

MACTIVITY 1 Absolute value of 2 real number

On a winter day, the temperature (in °C), recorded at noon, has an absolute value of 5.

a) What is the recorded temperature that day if the temperature is:
1. above 0 °C? 5°C 2. below 0°C? -5 °C

b) We represent the absolute value of a number x by |x|. Determine:

1. |+10]= _10 2. |-10]= _10 3. 10]= _0

€} Isit true to say that two opposite numbers have the same absolute value?  Yes
ABSOLUTE VALUE OF A REAL NUMBER
The absolute value of a real number a, written |4, is defined by:
_Ja i a=0
laf = {—a if a<0
Ex.: [+4]=4; [-3|=3; [0]=0.
Note that the absolute value of a real number is never negative.
T. Determine the following absolute values.
A BE= £ b) [47= 27 g o=_O0  d -
3 2 5
- 6.53 3] 2 2| % 5| =
o 653= %% |3-_3 g [ Y- 5 h |- 1
ACTIVITY 2 Properties
Consider a real number a and a non-zero real number b. Answer true ar false,
2) Ja|>0 True b) la/=|a Thue
) la+b|=la] + | __False d) Ja—b|=a] - b _Faise
e) |a . b] = |a| . ,b' True f) % =.I%f True
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PROPERTIES

* la+ b < lal+ b
 la— b= || - bl

o |ab| =al - |b]
a| _la , 8| 14l
G e -

4| =0

For any real number @ and any real number b, we have the following properties.
° |la|=0 Ex.. |[+3| = 0;
e |a| = |4l 4 = |-4]

7+ (2] =< |7} + |-2]
5—(3) =I5 - 13l
|8 x (=3)] = [8] x |3

2. Complete the following using the appropriate symbol =, >, <

a) [x+5_>0 b) x-3|_= |3—x]
d)w—nLLJH—une)“”LzJﬁﬂ

x-1

k-1l

MNCTIVITY 3 Absolute value equations

Q [2(x-1| = 2]x—1|

f) 6+9] _<_|-6|+ (9]

a) Today’s temperature x, in degrees Celsius, recorded at noon has an absolute value of 20.

Determine this temperature if
1. it is warm. 20° 2. itis cold.

=-20°

b) What are the solutions to the equation |x| = 20?

-20 and 20

¢) Consider the equation |x| = 0. What is the unique real number that verifies this equation? @_

d) Consider the equation |x| = —4. Is there a real number that verifies this equation? Justify your

ANswer.
No, since the absolute value of a real number is never negative.

ABSOLUTE VALUE EQUATIONS
The number of solutions to the equation: _
e [CHER
depends on the sign of k. |
ifk>0 fk=0 fk<O
The equation has 2 solutions. | | The equation has 1 solution. The equation has no
x=-korx=k x=0 : solution.
Ex.: |x| =3 Ex.: [x]=0 Ex.: |x| =-5
S ={-3,3} S = {0} S=0
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3. Solve the following equations.

a) |x| =12 b) jx| =-8 €) |x+5/=0
S={-12, 12} S$=0 S ={-5}

d) [2x+1=7 e) '%x—5’= fj 16-x=-3
S ={-4, 3} S ={2, 18} S$=0

£&. Solve the following equations.
a) 2lx—5|-4=0

S={3,7) s-[-4,

b) -213x— 1| +4=-6
. -]

Q) 12-[6—2x=3

2° 2

d) x—-5/+8=2
s-f4

e) 3|2x+5/+6=6

f) |[4x~5|+6=9

MECTIVITY 4} Absolute value inequalities
a) Consider the inequality [x| < 3.

On the real number line below, represent the set of all real numbers verifying this inequality

and find the solution set.

] ] [ & 1 [ | il 1 'y i [l | [ S

L I I 1 i LT I I [ »~

b) Consider the inequality |x| > 4.

On the real number line below, represent the set of all real numbers verifying this inequality

and find the solution set.

N =S U IS A N R I N S -
1 . S =

1 1 1 |} i T

01

T 1 -

LI 1 o

-3, 3]

Jo, ~4[U 14, +oof

Given a positive real number k, we have:

ABSOLUTE VALUE INEQUALITIES

lx| < &
Sx=z-kand x<k

i) 0 k
S =[k, k]
Ex.: The inequality |x| < 5 has the

]

solution set: S = [-5, 5].

lx| = k

sxs-korx=k

v

-k 0 i
S = |-o0, k] U [k, +o]

Ex.: The inequality |x| = 5 has the
solution set: § = ]-o, —5] U [5, +<].
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2.3 Absolute value function

87




5. For each of the following inequalities, determine the solution set and represent it on the real

number line.
a) |x| > 10 b) |x| <4 c) |x|>-3
= o IS >
S =], ~10[ U J10, +of S=[4 4] S=R
d) ol <2 &) |x=>0 ) k=<0
> > . -
S= S=R S =10}

MCTIVITY S Basic absolute value function

Consider the function f defined by the rule y = [x]. 7 |
a) Complete the following table of values.
3(-2y-1p 0111213 A
3 2 1 0 1 2| 3 f -
of %
b) Represent the function fin the Cartesian plane.
€) Determine
1. dom f. 8 2. ranf. R,
3. the zero of £. o 4. the initial value of f. 0
5. the sign Off. Jix) = 0 over R.

6. the variation of f. f 7 over [0, +=[, f 5 over }-», 0]

7. the extrema of f, minf=0

‘BASIC ABSOLUTE VALUE FUNCTION
* The function f defined by the rule:
| | o) =
is called the basic absolute value function.
* We have:

domf=R ranf=R_

The zero of f is 0. The initial value qf fis 0.

Sign of f: f{x) = 0 over R.

Variation of f: fis increasing over IR . f is decreasmg over IR
. The functlon fhas a minimum of 0.
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6. Consider the basic absolute value function f{x) = |x| represented on 2 U
the right. 1
a) Using the graph, find the values of x for which the function f{x} is: 1
1. equalto 2. -2 and 2 4 [ ,;
2. less than 2. xc 2 2[ of 4 x
3. less than or equal to 2. xe[-2 2]
4. greater than 2. x € J-o, -2{ U ]2, +eof
5. greater than or equal to 2. __x¢€ J-®, =2J U {2, +of
b) Using the graph, solve the following equations or inequalities:
1. |x|=1_8={11} 2. |x| =0 _S={0} 3. |l = -1 =
S=R

4, Ix|<1 S=F1L,1] 5 |x>3 _S=}co,-3[UJ3, +oof 6.

x| > -1

ACTIVITY ® Absolute value function /(x) = a|b(x ~ h)| + k

The basic absolute value function f(x) = |x| can be transformed into
an absolute value function defined by the rule

glx) =alb(x— k)| + &

a) Consider the basic absolute value function f(x) = |x| and the
absolute value function g(x) = alx|.
Represent, in the same Cartesian plane, the functions g, (x) =2|x],
&(x) = %|x| and g;(x) = —|x| and explain how to deduce the
graph of g from the graph of f when

1. a>1: by a vertical stretch.

2. 0< a< 1: by a vertical reduction.

3. a=-1: by a reflection about the x axis.

4. Complete: From the graph of f(x) = ||, we obtain the graph of g(x) = alx| by the

transformation (x, y) — __{% ay)

5. Is the graph of g(x) = alx| open upward or downward when
1) a > 07 _upward 2) a<07? downward

b} Consider the basic absolute value function f{x) = |x| and the
absolute value function g(x) = |bx].

Represent, in the same Cartesian plane, the functions g (x) = |2x],
&(x) = |lx and g(x)} = |-x| and explain how to deduce the

graph of g from the graph of f when
1. b>1: by a horizontal reduction.

2. 0< b < 1: __ by a horizontal streich.

3. b=-1: by a reflection about the vy axis.
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4. Complete: From the graph of f(x) = |x|, we obtain the graph of g(x) = |bx] by the

transformation (x, y) - _[!’,’ y

5. Compare the graphs of the functions y = 2|x| and y = |2x| obtained in a) and b). Jusufy
your answer. They are the same. In _fact szl |2 | |x[ =2 le

6. Compare the graphs f(x) = |x| and f{x) = |«]. Justify your answer.
They are the same. In fact, |x| = |-x|.

¢} Consider the basic absolute value function f(x) = |x| and
the absolute value function g(x) = |x — A|.
Represent, in the same Cartesian plane, the functions
&(x) = |x — 3| and g,(x) = |x + 2| and explain how to
deduce the graph of g from the graph of f when
1. h > Q: by a horizontal translation to the right.

2. h < Q: by a horizonial translation to the left.

3. Complete: From the graph of f(x) = ||, we obtain the graph of g(x) = |x — h| by the
transformation (x, y) — (x +h, y)

d) Consider the basic absolute value function f(x) = |x| and the
absolute value function g(x) = |x| + k.
Represent, in the sarne Cartesian plane, the functions

g (x) = |x| + 2 and g,(x) = |x| — 3 and explain how to deduce
tille graph of g from tﬁe graph of f when

k > (: __ by a vertical translation upward.

1.

2. k < (: __ by a vertical translation downward.

3. Complete: From the graph of f{x) = |x|, we obtain the graph
of g(x) = |x| + & by the transformation
(5y)— Loy +h.

ABSOLUTE VM!!E FUNCTION f(x) = a|b(x - k)| + k

The graph of the function f{x) = a|b(x — k)| + k is deduced from the graph of the basic absolute
value ﬁmc’uon y = |x| by the n'ansfonnatiom _

(x,y)—>(3+h,ay+k)

Ex.: The graph of the function f{x) = -3|%(x )| +4is ”
deduced from the graph of the basic absolute value function ;
g(x) = |x| by the transformation: (x,y) — (2x + 1, —3y +4)

14
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7. The following functions have a rule of the fo

1(x) = 3]xl; fz(x) b szl;.ﬂ;(x) = lx

m f{x) = alb(x — h)| + k.

Complete the table on the right
by determining, for each func-

+ A4, fi(x) = |x| + 1 and f;(x) = 2[3(x — 1)| - 4.

tion, the parameters a, b, h and %

and by giving the rule of the
transformation which enables

you to obtain the function from

the basic absolute value function
g(x) = |x].

aiblhik o
fi(x) = 3}x| 3lifofo]x w— (x 30
f(x) = |2« 12000 (x v — [;. y]
H(x) = |x + 4 FjIj4j0j(xp)—>(x-4,y
fy(x) = x| + 1 11101t —(x,v+1)
@ =23x-1)-42[3]1]<a¢ o [5+12p-4)

8. In cach of the following cases, we a

pply a transformation to the basic absolute value function

¥ = |x|. Find the rule of the function obtained by applying the given transformation.

a) (x,y) — (x,-y) y=-|x|
) y)o[Ey)  vm I
i

e) (x,y)— (3x,-7y)

9. From the basic absolute value function and using the transfor-
mation (x,y) — [% + hoay + k], represent the function

y= —ZE(x - 1)) + 4 in the Cartesian plane.

For example, (1, 1) — (4, 2)

ACTIVITY 7 Grapiing the function f(x) = ab(x - AEY

Consider the function f{x) = 4’—% (x—-1)

'-4.

a) Identify the parameters g, b, h and k.

a=4,b=-%,h=1a-ndk=-4

b) Is the graph open upward or downward? Justify your answer.

Upward, a > 0.

€) What are the coordinates of the vertex?

d) Find the zeros of the function.

Vi1, -4)

-1 and 3

e) Represent the function fin the Cartesian plane after completing

the following table of values,

21114

2 1-41 2
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d} (x,¥) — (5x,)

=2|3(x-1)j -4
) (x,y)—e[%-{—l,Zy—-/-l] y=2|3(x- 1)

b) (x,y) > (x—2,y+4) v=1x+2|+4

_[x
Y=15
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- GRAPH OF AN ABSOLUTE VALUE FUNCTION
Consider the absolute value function defined by the rule;
fix) = alb(x — k)| + k

e The graph is open: | ik B
— upward if a > 0
— downward ifa < 0.

* The graph has the vertex: | V(h, k)

¢ The graph has the following line as an axis of i
symmetry: AT

x=h

=
=
=

10. Write the rules of the following functions in the form y = alx — k| + k and identify the

parameters 4, h and k.

a) y=-23x+3|+5 b) y=4|6-3x/+5
y=-6lx+1|+5;a=-6,h=-1, k=5 y=12|x-2|+5;a=12,h=2,k=5

Q) y=—118x— 4 +3 d) y=-—%|4—%x +3
y=_4|x—%l+3;a=—4’h=%’k-3 y=_%[x-20|+3;a=—%,h=20,k=3

1 1. Graph the following functions.
a) y=-2]x—2[+3 b) y=gl4—4x -2 Q) y=-33x— 6] +4

v yA
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MNCTIVITY & Dpetermining the sign of an absolirte value fwiction

Consider the absolute value function flx) = -2|x + 5| + 8.
a) What are the zeros of this function? -9 end -1

b) Determine the sign of this function using a sketch.

PN ;
I N

fix)= 0ifxe [-9, -1] and f{(x) < 0 if x € <o, ~9] U [1, +oof

MNETIVITY © study of an absolute value function

Consider the functions f(x) = %|8 — 4x| — 3 and g(x) = —%IZx — 4] + 4.
a) Write each of the rules in the form y = ajx — k| + k and represent the functions in the Cartesian
plane.
7 S
|
|
|
|
;
1
N1 :
X
I
|
i
fix)=2|x-2]|-3 gx)=-Z|x-2|+a

b) Do a study of each of the preceding functions and complete the table below.

Properties v f £
Domain R R

Range [3, +oof J, 4]

Zeros % and % -4 and 8

Initial value : 1 %
Sign ftx) = 0 over -, -1-] U[_;" *W‘ fix) = O over [-4, 8]
fx) < 0 over |2, 2 flx) = 0 over J-, ~4] U {8, +[

Variation f Y over J-x, 21; f » over [2, +xf F 7 over J-», 2]; £~ over [2, +of
Extrema min f = -3 maxf=4
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STUDY OF AN ABSOLUTE VALUE FUNCTION

Given the absolute value function: f{x) = alb(x — k)| + k, we have:
¢ domf=R.
o ranf= [k, +o[if a > 0; [0, k[ if a < 0.
* The zero(s) of f exist if a and k are opposite signs or if & = 0.
* To study the sign of f,
— we find the zero(s) if they exist;
— we establish the sign of f from a sketch of the graph.
* Variation
If a > O, fis decreasing over -, h|. Ifa < 0, fis increasing over |-, A].
f 1s increasing over [k, +o], fis decreasing over [k, +o]

¢ Extrema
If a > 0, f has a minimum. min f= k.
If a < 0, fhas a minimum. max f= k.

Ex.. Consider the function fix) = 3|x+ 2|+ 6. (a=-3,b=1,h= -2,k =6)
* Open downward, a < 0.

¢ Inittal value: y = 0,
* domf=R,  ranf=]-, 6

* Vertex: V(-2, 6), AN
* Axis of symmetry: x = -2 |
¢ Zeros: -3|x+ 2| +6=0 ]
Pe+2| =2 }
. '
@ x+2=-2 orx+2=2 : Al b
x=—4 or = x=0 o) HE
|
I
1

* Sign of f. f{x) 2 0 over [-4, 0]; f(x) =< 0 over |-, —4] U [0, +.
© Variation of f: fis increasing over |-, -2]; fis decreasing over [-2, +o].
* max f= 6.

12. Represent the graph and do a study of the function : - :

. ‘

fo) = —712(x - 1)| + 2. s

dom =R; ran = J-=, 2], l
Zeros: -3 and 5.

Initial value: 1.5.
Sign: f(x) = 0 over [-3, 5].

Jix) < O over J-=<, 2[ U ]5, +x[,
Variation: f » over }-», 1]; f v over 1, +x[
Extrema: max = 2
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13. Determine the domain and range of each of the following functions.
a) y=-2]x+5/—1 b) y=gl-2(x— 1) 45

dom = R, ran = o, ~F] dom =R, ran = {5, +of

14. Determine the zeros of the following functions.

2 14
—3— and —3—-

a) y=3jx~5/-¢ Sand7 b) y=~216 -3 + 4
€} y=4{2x + 1| + 8_Nozero d) y=-5/6-x_6

_% 15. Consider the linear function f(x) = 2x — 3 and the absolute value function g(x) = 3|3x - 5| - 4.

Determine the initial value of the composite

a) gof:_8 b} fog: 19
b 6. Determine the interval over which each of the following functions is positive.
a) y=~3x—5[+2 b) y=23 - 24| — 4
fx) = 0 over [-1, 11] fix)> 0 over |-=, 2|2, 4=
Q) y=3|-2x+4/-3 d) y=3x-5/+6
f(x) = 0 over J-, 0] U [4, +f f(x) = 0 over R

17. Determine the interval over which each of the following functions is increasing.
a) y=>5|6—4x| + 2 b) y=-3]2x+4|+5
JF » over [-g-, +°°l S 7 over J-o, -2]

18. Determine the solution set to each of the following inequalities.

a) |x—5/>3 b) 16-x <1 ) Bx—2|=4
S =Jo, 2{U]8, +oof S=15 7] S=J—w,-—§—JU[2,+°°[
d) 2x+5|<0 e 2lx+1/+5>-5 f) 32—« +4>1
s={--g-} S =16, 4 S=R
g) 6-3x—1<0 h) 2x—1]+5>0 i) §_1'>o
S =]-=, ~1J U [3, +oof §=12 3 § =R\{2)
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19. Study each of the following functions and complete the following table.

fi)=-2x - 1+8 fix) =3lx+ 2| — 6 ﬂx):iﬁx_—uﬁq fix) =35 — «
Dom f R R R R
Ran f F=, 4] [-6, +=] [3, +=[ <<, 0]
Zero(s) -Iand 3 -4 and 0 None 5.
if they exist
Initial value 2 0 5 -15
Sign fix) = 0 over -1, 31 f(x) = O over J-=, 4] U [0, 4[] fi(x) = O overR f(x) = 0 over {5}
Jix} < 0 over }, -1J U 13, +=[ Fix) < 0 over }-4, Of fix) < O never ] f(x) < 0 over R\[5]
Variation l f 2 over }-, 1} F » over [-2, +=[ f 7 over [4, +oof f» over =, 5]
J v over [1, +xf F v over J-«, =27 I N over =, 4] F~ over [5, +of
Extrema max =4 min = -6 min =3 max = 0

Aeriviry 1© Finding the rule of an absolute value function

The rule of any absolute value function can be written in the form f(x) = alx — h| + k.

a) Consider the function f{x) = 3|-2(x — 5)| + 7.

Write the rule of this function in the form f(x) = a|x — 4| + k.

b) Consider the absolute value function with the vertex

V{(-2, 4} and passing through the point P(1, -2).
1. Identify hand k. h=-2, k=4

2. Determine a knowing that the coordinates of the point

P(1, =2) verify the rule of the function.
We have: y=alx+2| +4

2=al|l1+2]|+4

=6 = 3a

a=-2

3. What is the rule of the function? _fix)=-2|x+2|+4

96 Chapter 3 Real functions
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HINDING THE RULE OF AN ABS@I-UTE-\M[UE rUNCTION
The rule of any absolute value function can be written in the form:
fx) = alx — bl +

Ist case: The vertex V and a point P are given

1. Identify the parameters h and &. l.Lh=-land k=2
y=alx+ 1| +2 Vi-1,2)

2. Find a after replacing x and y in the rule 2. ~-1=al2+1|+2

by the coordinates of the given point P ~1=3a+42

L™ /:) a=-1

3. Deduce the rule, ﬂf"" J.y=—jx+1+2
2nd case: Three pomts, of witic ch twoegh @ the same y-co ate, are grveiz e, v
1. Identity h as half,ﬂfe sum of th,a*x—coordmates #17 h“’% (-6) + 2y c.«*’

of the points,zmth the same,3,f=‘-coordmatfesﬁ.‘,,P M,.» B .ﬁ,, 7 A-6,2)

2. Find slope of the ra,y‘passmg th mﬁgh e 2 ZZ——.-;L,E— 1 _m 0
t\«wg:n points, andestablish _pﬁgmeterfﬁ Sﬁlﬂpe gt 2 ( }
/a/ccord-mg to the pfj'enmg of«wtﬁg graph T g= }l‘ (’gpen dmvnwaa'd) f
nﬁ’*ﬂ fl jp""" ,ﬁw }kv 2 .
3. Fmdkaftﬁeplaq,ngxandymtheﬂﬂe B ya‘%——lx+4|+kdf
by the ?mbrqut& of one (pf ‘timrgwen i

s g 1 :
poins’ o P 2 _E‘“fé""’ﬂ i b

case: Anye e pomts aﬁg@iven j’&ﬁ - #ﬂﬁ_ P
1. Find thy "ﬁépe of the.;.a‘j passing througb\*" 1 Sl.gpﬁm &3
i \ﬁé‘n points, asd establish pararpeter a o

acglfchng to th@«épenmg of the g;(,:ﬁph A A==
& e e ,?@"3
2. Find the eg#fation of ea " ﬁmowmg S hﬁ‘-‘f =3*t3
that the;f’é opes are oltnpcxs’l‘r‘ta > e 3
_ - & P
v 11;_ ' . J :Q._'i":- . e i
3. Find the coordinatés (h k of the 7 3.-‘.’%96 + % =
vertex V, which:ds th htersection " o ' 6 ' 6 :
of the two rays /6" i R e 'ﬁ_{,-!v MLt y=2
' Thus V(l 2)

L 4y= -_Z x— 1]+ 2

P(2,-1

Bi-2.2}

€
{13,-7
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20. Find the rule of an absolute value function whose graph
a) has the vertex V(3, 4) and passes through the point P(7, 6).
b) passes through the points A(2, -6), B(5, -8) and C(~4, -6).

 y=2[x-3| +4

yé'—% Ix+1|-4

<) passes through the points A(1, -1), B(3, -5) and C(-4, =3).

v=-2ix+1|+3

2 1. In order to draw the simulated trajectory of a toy airplane, Ethan uses the rule of an absolute
value function that gives the airplane’s height ¥, in metres, as a function of elapsed time x, in

seconds. The rule of the function isy = —%Ix — 8| + 10.

For how many seconds is the height of the airplane above 7 m?

22. In the Cartesian plane on the right, a view of an airplane
hangar is represented with the roof of the hangar corres-
ponding to an absolute value function given by the rule

= —%lx ~ 6]+ 8.

a) What is the height of the wall AQ? 5 m

y.j}

4.8 seconds

b) What is the height of the wall CD if the width of the 0

D x

hangar is equal to 16 m? _3 m

€) The ceiling EF is built at a height of 6.5 m. What is the width of the ceiling? 5.6 m

23. The graph on the right represents the evolution of a share’s Value 4
value on the stock market. Eight weeks after its purchase, g
the share reaches its maximum value of $9. If it initially
was worth $7, what will it be worth after 13 weeks?

v=alx-8| +9; 7=8a+9;a=-l

%

4
__1. 2t
2 1x-8] +9. B ! T T
It will be worth $7.75. of 2 Number of
weeks
24. The graph on the right represents the profit of a Profit - 4
recycling company during its first 40 weeks of finthousands (25, 30}
operation. of §) '
During how many weeks was the profit greater than
$15 000?
v=-2|x-25| + 30
“2|x~-25|+30=15;x=17.50rx = 32.5. 7l I
During 15 weeks. / Number of
weeks
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25. The air conditioning system in an office building has been programmed so that it turns on
when the outside temperature reaches 23 °C and turns off when it reaches 20 °C.

The outside temperature varies according to the rule of the absolute value function given by
¥ = =3[x — 6] + 35 where x represents the elapsed’ number of hours since 6 am. and y
represents the outside temperature in °C,

How many hours was the system on?
It turns on at 8 a.m. and turns off at 5 p.m. The system is on during 9 hours.

26. The lateral view of a channelling system is represented in the
Cartesian plane on the right, scaled in metres,
The walls of this system are represented by an absolute value
function with the rule: y = 3jx — 8| + 12.

A filtering net is placed 4 m below the ceiling of the canal. If
the width of the canal is 8 m, what is the width of the filtering

net? .

4

When x = 12, y = 24;
When y = 20, x = 3 orx = 22, The width of the net is 5.33 m. |

of the roof corresponds to the line y =5 ' B

The sides of the roof form the graph of an absolute value func- \ c

tion passing through the points A(-2, 3), B(2, 13) and C(8, 8). /

What is the area of the triangle limited by the roof and the ling? ry
v=~3|x-4] +18; base =32 height = 13. LT / N \

27. The graph on the right represents the front of 2 house. The.; base A

The area of the triangle is 67.6 u?,

2Z28. A projectile is thrown from a height of 6 m and Hataht

follows the trajectory of an absolute value function. It {,',ﬂ 1
reaches a maximum height of 14 m after 4 seconds.

Five seconds after reaching its maximum height, it
bounces off a cement block and follows the trajectory

of a quadratic function. If the maximum height of the
second bounce is 8 m and occurs three seconds after
bouncing off the cement block, when will the 6
projectile hit the ground? (Round your answer to the

nearest second), ' v

y=-2(x-4|+14, PO, 4y =-5(x-12)7 + 8 0

-~

O

The projectile hits the ground at t = 16 s. ‘ (s}

—— el
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